- 参数方程化成普通方程
- 共19题
12.在直角坐标系中,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系。若曲线C的极坐标为
,则曲线C的直角坐标方程为 .
正确答案
解析
由极坐标方程得,化为直角坐标方程为
,即
。
考查方向
解题思路
先将极坐标方程两边同乘以后直接利用互化公式即可。
易错点
极坐标和直角坐标的互化公式记不住出错。
知识点
23.在直线坐标系xoy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.
(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;
(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.
正确答案
1
知识点
选做题:请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.
22.选修4—1:几何证明选讲
如图,是直角三角形,
,以
为直径的圆
交
于点
,点
是
边的中点,连接
交圆
于点
.
(1)求证:、
、
、
四点共圆;
(2)求证:
23.选修4-4:坐标系与参数方程
已知平面直角坐标系,以
为极点,
轴的非负半轴为极轴建立极坐标系,曲线C的参数方程为:
,点A,B是曲线C上两点,点A,B的极坐标分别为:
;
(1)写出曲线C的普通方程和极坐标方程;
(2)求|AB|的值。
24.选修4-5:不等式选讲
已知(
是常数,
∈R);
(1)当时求不等式
的解集;
(2)如果函数恰有两个不同的零点,求
的取值范围.
正确答案
22.
证明:
(1)连接、
,则
又是BC的中点,所以
又,
所以 所以
所以、
、
、
四点共圆
(2)延长交圆
于点
.
因为.
所以所以
23.
解:
(1)曲线C的参数方程为:,
消参数得曲线C的普通方程为:
由曲线C的普通方程为:
所以曲线C的极坐标方程为:
(2)由点A,B的极坐标分别为:
得点A,B的直角坐标分别为:
所以
24.
解:
(1){x|x≥2或x≤-4}.
(2)(-2,2)
①当a=1时,f(x)=|2x-1|+x-5=.
由解得x≥2; 由
解得x≤-4.
∴f(x)≥0的解为{x|x≥2或x≤-4}.
②由f(x)=0得|2x-1|=-ax+5.作出y=|2x-1|和y=-ax+5 的图象
观察可以知道,当-2<a<2时,这两个函数的图象有两个不同的交点,函数y=f(x)有两个不同的零点.故a的取值范围是(-2,2).
解析
解析已在路上飞奔,马上就到!
知识点
选做题(14、15题,只能从中选做一题)
14.(几何证明选讲选做题)
如图,点A、B、C都在⊙O上,过点C的切线交AB的延长线于点D,若AB = 5, BC = 3,CD = 6,则线段AC的长为_______。
15.(坐标系与参数方程选做题)
在极坐标系中,过点作圆
的切线,则切线的极坐标方程是_______。
正确答案
14.
15.
解析
解析已在路上飞奔,马上就到!
知识点
22.已经曲线C1的参数方程为(
为参数),以坐标原点O为极点,x轴的正半轴为极轴建立及坐标系,曲线C2额极坐标方程为
=2.
(1)分别写出C1的普通方程,C2的直角坐标方程;
(2)已知M,N分别为曲线C1的上,下顶点,点P为曲线C2上任意一点,求|PM|+|PN
的最大值.
正确答案
(1)曲线C1的普通方程为,曲线C2的普通方程为
(2)由曲线C1:,可得其参数方程为
,所以P点坐标为
,
由题意可知,M,N
因此,
所以当=0的时候,
有最大值,为
。
解析
主要是消去参数。利用解析几何相关知识求解
考查方向
本题主要考查直角坐标和极坐标的相互转换,考察解析几何的简单应用
易错点
直角坐标和极坐标不会转换
知识点
扫码查看完整答案与解析