- 等差数列的判断与证明
- 共87题
已知{an}是以a为首项,q为公比的等比数列,Sn为它的前n项和。
(1)当S1、S3、S4成等差数列时,求q的值;
(2)当Sm、Sn、Sl成等差数列时,求证:对任意自然数k,am+k,an+k,al+k也成等差数列。
正确答案
见解析。
解析
(1)由已知,an=aqn-1,因此S1=a,S3=a(1+q+q2),S4=a(1+q+q2+q3)。
当S1,S3,S4成等差数列时,S4-S3=S3-S1,可得aq3=aq+aq2.
化简得q2-q-1=0.解得.
(2)证明:若q=1,则{an}的每项an=a,此时am+k,an+k,al+k显然构成等差数列。
若q≠1,由Sm,Sn,Sl构成等差数列可得Sm+Sl=2Sn,即
整理得qm+ql=2qn.
因此,am+k+al+k=aqk-1(qm+ql)=2aqn+k-1=2an+k,所以,am+k,an+k,al+k成等差数列。
知识点
19. 已知数列的前n项和
,
是等差数列,且
.
(I)求数列的通项公式;
(II)令.求数列
的前n项和
.
正确答案
知识点
8.如图,点列分别在某锐角的两边上,且
,
.
(P≠Q表示点P与Q不重合)
若,
为
的面积,则
正确答案
知识点
18. 已知数列的前
项和为
,点
在直线
上,数列
的前n项和为
,且
,
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设,数列
的前
项和为
,求证:
;
正确答案
(1),
;
;(2)见解析.
解析
试题分析:本题属于数列中的基本问题,题目的难度是逐渐由易到难.
解:(Ⅰ)由题意,得 ①
当时,
当时,
②
综上,
又
两式相减,得
数列为等比数列,
.
(Ⅱ)
是递增数列,
考查方向
解题思路
本题考查数列问题,解题步骤如下:
1、利用an与Sn的关系求解。
2、利用等比数列的求和公式求解。
易错点
等比数列分项时项数易错。
知识点
18. 设数列的前n项和为
.
(1)求数列的通项公式
;
(2)是否存在正整数n,使得?若存在,求出n值;若不存在,说明理由.
正确答案
(1);
(2).
解析
本题属于三角函数的图像与性质及正余弦定理的综合应用问题,属于简单题,只要掌握相关函数的知识,即可解决本题,解析如下:
解:(1)
所以时,
两式相减得:
即也即
,
所以为公差为
的等差数列
所以(Ⅱ)
所以
所以
所以
所以即当
时,
考查方向
本题考查了数列的相关知识点,属于简单题。
易错点
相关知识点不熟悉导致出错。
知识点
扫码查看完整答案与解析