- 牛顿运动定律
- 共1024题
17.在稳定轨道上的空间站中,物体处于完全失重状态。有如下图所示的装置,半径分别为r和R(R>r)的甲、乙两个光滑的圆形轨道安置在同一竖直平面上,轨道之间有一条水平轨道CD相通,宇航员让一小球以一定的速度先滑上甲轨道,通过粗糙的CD段,又滑上乙轨道,最后离开两圆轨道,那么下列说法正确的是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
25.如图所示,在竖直边界线左侧空间存在一竖直向下的匀强电场,电场强度大小E=100 V/m。电场区域内有一固定的粗糙绝缘斜面AB,其倾角为37,A点距水平地面的高度h=3 m;BC段为一粗糙绝 缘水平面,其长度L=3 m。斜面AB与水平面BC由一光滑小圆弧连接(图中未标出),竖直边界线
右 侧区域固定一半径R=0.5 m的半圆形光滑绝缘轨道,CD为半圆形光滑绝缘轨道的直径,C、D两点紧贴竖 直边界线
,位于电场区域的外部(忽略电场对
右侧空间的影响)。现将一质量m=1 kg、电荷量q=0.1 C的带正电的小物块(可视为质点)置于A点由静止释放,已知该小物块与斜面AB和水平面BC间的动摩擦因数均为
。
(1)求物块到达C点时的速度大小。
(2)求物块到达D点时所受轨道的压力大小。
(3)物块从D点进入电场的瞬间,将匀强电场的方向变为水平方向,并改变电场强度的大小,使物块恰好能够落到B点,求电场强度的大小和方向(取=2.24)。
正确答案
(1)物块由A点至C点的运动过程中,根据动能定理可得:
解得:
(2)物块在由C点至D点的运动过程中,根据机械能守恒定律可得:
+mg2R
物块运动到最高点时,根据牛顿第二定律可得:
联立解得:vD=4m/s,FN=22N
(3)物块进入电场后,沿水平方向做初速度 的匀变速运动,沿竖直方向做自由落体运动,设其沿水平方向上的加速度为a,物体由 点运动到B点所用的时间为t,则有:
L=
解得:, 说明电场方向水平向左
又由
解得:
解析
解析已在路上飞奔,马上就到!
知识点
22.如图所示,水平桌面上有一小车,装有砂的砂桶通过细绳给小车施加一水平拉力,小车从静止开始做直线运动。保持小车的质量M不变,第一次实验中小车在质量为m1的砂和砂桶带动下由静止前进了一段距离s;第二次实验中小车在质量为m2的砂和砂桶带动下由静止前进了相同的距离s,其中m1<m2<M。两次实验中,绳对小车的拉力分别为T1 和T2,小车、砂和砂桶系统的机械能变化量分别为ΔE1和ΔE2,若空气阻力和摩擦阻力的大小保持不变,不计绳、滑轮的质量,则下列分析正确的是( )
A.(m1g-T1)<(m2g-T2),ΔE1=ΔE2
B.(m1g-T1)=(m2g-T2),ΔE1=ΔE2
C.(m1g-T1)<(m2g-T2),ΔE1<ΔE2
D.(m1g-T1)=(m2g-T2),ΔE1<ΔE2
正确答案
A
解析
设空气阻力和摩擦阻力的合力为,因小车与砂桶具有相等的加速度,对小车与砂桶应用牛顿第二定律有
,因
,所以
,进而
。由牛顿第三定律可知,两次实验中,绳对砂桶的拉力也分别为T1 和T2,方向竖直向上,再对砂桶单独应用牛顿第二定律有
=
,
,所以(m1g-T1)<(m2g-T2)。两次实验中,小车和砂桶的位移均为s,克服空气阻力和摩擦阻力做的功相同,机械能的变化相等。
知识点
4.如图所示,竖直平面内有一固定的光滑绝缘椭圆大环,水平长轴为AC,竖直短轴为ED。轻弹簧一端固定在大环的中心O,另一端连接一个可视为质点的带正电的小环,小环刚好套在大环上,整个装置处在一个水平向里的匀强磁场中。将小环从A点由静止释放,已知小环在A、D两点时弹簧的形变量大小相等。下列说法中错误的是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
19. 如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg的小滑块(可视为质点)静止在A点。一瞬时冲量使滑块以一定的初速度从A点开始运动, 经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点。经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数µ=0.20, 重力加速度g =10m/s2。
求:
(1)滑块通过C点时的速度大小;
(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;
(3)滑块在A点受到的瞬时冲量大小。
正确答案
解:(1)设滑块从C点飞出时的速度为vc,从C点运动到D点时间为t
滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2
水平方向:s1=vCt
解得:vC=10m/s
(2)设滑块通过B点时的速度为vB,根据机械能守恒定律
mv
=
mv
+2mgR
解得: vB=10 m/s
设在B点滑块受轨道的支持力为N,根据牛顿第二定律
N-mg=m,解得:N= 45N
(3)设滑块从A点开始运动时的速度为vA,根据动能定理
-μmgs2=mv
-
mv
解得: vA=m/s=16.1m/s
设滑块在A点受到的冲量大小为I,根据动量定理I=mvA
解得:I=m/s=8.1kg·m/s
解析
解析已在路上飞奔,马上就到!
知识点
16.19世纪匈牙利物理学家厄缶就明确指出:“沿水平地面向东运动的物体,其重量(即:列车的视重或列车对水平轨道的压力)一定要减轻。”后来,人们常把这类物理现象称为“厄缶效应”。如图所示:我们设想,在地球赤道附近的地平线上,有一列质量是M的列车,正在以速率v,沿水平轨道匀速向东行驶。已知:(1)地球的半径R;(2)地球的自转周期T。今天我们像厄缶一样,如果仅考虑地球自转的影响(火车随地球做线速度为R/T的圆周运动)时,火车对轨道的压力为N;在此基础上,又考虑到这列火车匀速相对地面又附加了一个线速度v做更快的圆周运动,并设此时火车对轨道的压力为
,那么单纯地由于该火车向东行驶而引起火车对轨道压力减轻的数量(N-
)为( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
11.如图1-14所示,一带电液滴在重力和匀强电场对它的作用力作用下,从静止开始由b沿直线运动到d,且bd与竖直方向所夹的锐角为45°,则下列结论正确的是( )
正确答案
解析
每小题给出的四个选项中,有的小题只有一个选项符合题目要求,有些小题有多个选项符合题目要求,全部选对的得5分,选不全的得2分,有选错或不答的得0分
知识点
21.一轻质细绳一端系一质量为m=0.05kg的小球A,另一端挂在光滑水平轴O上,O到小球的距离为L=0.1m,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示,水平距离s=2m,动摩擦因数为μ=0.25。现有一滑块B,质量也为m,从斜面上滑下,与小球发生弹性正碰,与挡板碰撞时不损失机械能.若不计空气阻力,并将滑块和小球都视为质点,g取10m/s2。
试问:
(1)若滑块B从斜面某一高度h处滑下与小球第一次碰撞后,使小球恰好在竖直平面内做圆周运动,求此高度h;
(2)若滑块B从h/=5m处滑下,求滑块B与小球第一次碰后瞬间绳子对小球的拉力;
(3)若滑块B从h/=5m 处下滑与小球碰撞后,小球在竖直平面内做圆周运动,求小球做完整圆周运动的次数。
正确答案
解:(1)小球刚能完成一次完整的圆周运动,它到最高点的速度为v0,在最高点,仅有重力充当向心力,则有 ①
在小球从最低点运动到最高点的过程中,机械能守恒,并设小球在最低点速度为v
则又有 ②
解①②有m/s
滑块从h高处运动到将与小球碰撞时速度为v2,对滑块由能的转化及守恒定律有
因弹性碰撞后速度交换m/s,解上式有h=0.5m
(2)若滑块从h/=5m处下滑到将要与小球碰撞时速度为u,同理有
③ , 解得
滑块与小球碰后的瞬间,同理滑块静止,小球以的速度开始作圆周运动,绳的拉力T和重力的合力充当向心力,则有
④
解④式得T=48N
(3)滑块和小球最后一次碰撞时速度为,滑块最后停在水平面上,它通过的路程为
,同理有
⑤
小球做完整圆周运动的次数为 ⑥
解⑤、⑥得,n=10次
解析
解析已在路上飞奔,马上就到!
知识点
3.在两个固定、等量正点电荷连线上的P点,由静止释放一负点电荷,如图。在负电荷从P点向O点的运动过程中,说法正确的是( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
22.(1)质量m=1.0kg的物块A(可视为质点)与轻弹簧的上端连接,弹簧下端固定在光滑斜面底端,斜面的倾斜角θ=30º。平衡时,弹簧的压缩量为x=0.20m,此时具有的弹性势能Ep=0.50J,物块A处在O时弹簧为原长,如图所示。一质量m=1.0kg物块B(可视为质点)从距离物块A为d=2.0m处从静止开始沿斜面下滑,与物体A发生碰撞后立刻一起向下运动,但不粘连,它们到达最低点后又向上运动。求物块B向上运动到达的最高点与O的距离s。g=10m/s2
(2)如图所示,弹簧的一端固定在天花板上,另一端连接一个小球,弹簧质量不计,劲度系数为k,小球(可视为质点)的质量为m,将小球竖直悬挂起来,小球平衡的位置为坐标原点O。
将小球在竖直方向拉离平衡位置后释放,小球就在竖直方向运动起来。我们知道,以小球、地球、弹簧组成的系统,动能、弹性势能和重力势能的总和保持不变。如果把弹性势能和重力势能的和称为系统的势能,并规定小球处在平衡位置时系统的势能为零,请根据“功是能量转化的量度”,求小球运动到O点下方x处时系统的势能。
正确答案
(1)解:
B物体下滑至与A碰撞前:
AB碰撞,根据动量守恒,碰后:
可得:
碰后AB和弹簧组成的系统,机械能守恒,并且AB在弹簧处分离,设AB分离瞬间速度为v’,则根据机械能守恒:
可得:
此后,B向上做匀减速运动,上升距离为:
即O与B运动的最高点之间的距离s为0.35米。
(2)解一:
小球静止时,弹簧的形变量为x0,有:
以平衡位置为零势能面,到O点下方x:
重力做功:
弹簧弹力做功
因此,在O下方x处系统势能为:
解二:当小球在竖直方向静止时,有:
当小球在竖直方向运动经过O点下方x时,所受合力大小为
此力的大小只与小球相对其平衡位置的距离x有关,这个力做功对应于系统的势能。画出合力F随x变化的图像:
图像中图线所围成的面积即为小球从x处回O点,合力F做功,
O点为系统势能零点,那么小球在x处的系统是能为:
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析