- 随机抽样
- 共2422题
为了考察某校的教学水平,将抽查这个学校高三年级的部分学生本年度的考试成绩.为了全面反映实际情况,采取以下三种方式进行抽查(已知该校高三年级共有20个班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生的人数相同):①从高三年级20个班中任意抽取一个班,再从该班中任意抽取20名学生,考察他们的学习成绩;②每个班抽取1人,共计20人,考察这20名学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察(已知该校高三学生共1 000人,若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人).
根据上面的叙述,试回答下列问题:
(1)上面三种抽取方式的总体、个体、样本分别是什么?每一种抽取方式抽取的样本中,样本容量分别是多少?
(2)上面三种抽取方式各自采用的是何种抽取样本的方法?
(3)试分别写出上面三种抽取方式各自抽取样本的步骤.
正确答案
(1)这三种抽取方式的总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式的样本为所抽取的100名学生本年度的考试成绩,样本容量为100.
(2)三种抽取方式中,第一种采用的是简单随机抽样法;
第二种采用的是系统抽样法和简单随机抽样法;
第三种采用的是分层抽样法和简单随机抽样法.
(3)第一种方式抽样的步骤如下:
第一步,首先用抽签法在这20个班中任意抽取一个班.
第二步,然后从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.
第二种方式抽样的步骤如下:
第一步,首先用简单随机抽样法从第一个班中任意抽取一名学生,记其学号为a.
第二步,在其余的19个班中,选取学号为a的学生,加上第一个班中的一名学生,共计20人.
第三种方式抽样的步骤如下:
第一步,分层,因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.
第二步,确定各个层次抽取的人数.因为样本容量与总体的个体数之比为:100∶1 000=1∶10,所以在每个层次中抽取的个体数依次为,
,
,即15,60,25.
第三步,按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取25人.
(1)这三种抽取方式的总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式的样本为所抽取的100名学生本年度的考试成绩,样本容量为100.
(2)三种抽取方式中,第一种采用的是简单随机抽样法;
第二种采用的是系统抽样法和简单随机抽样法;
第三种采用的是分层抽样法和简单随机抽样法.
(3)第一种方式抽样的步骤如下:
第一步,首先用抽签法在这20个班中任意抽取一个班.
第二步,然后从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.
第二种方式抽样的步骤如下:
第一步,首先用简单随机抽样法从第一个班中任意抽取一名学生,记其学号为a.
第二步,在其余的19个班中,选取学号为a的学生,加上第一个班中的一名学生,共计20人.
第三种方式抽样的步骤如下:
第一步,分层,因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.
第二步,确定各个层次抽取的人数.因为样本容量与总体的个体数之比为:100∶1 000=1∶10,所以在每个层次中抽取的个体数依次为,
,
,即15,60,25.
第三步,按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取25人.
(10分)为了了解某学校餐厅的饭菜质量问题,采用分层抽样的方法从高一、高二、高三三个年级中抽取6个班进行调查,已知高一、高二、高三年级分别有18、12、6个班.
①求从高一、高二、高三年级分别抽取的班级个数;
②若从抽取的6个班中随机抽取2个进行调查结果的对比,试列出所有可能的抽取结果,并且计算抽取的2个班中至少有1个来自高一年级的概率.
正确答案
①从高一、高二、高三年级分别抽取的班级个数3,2,1;②=1-
试题分析:(1)由题意知总体个数是6+8+12,要抽取的个数是6,做出每个个体被抽到的概率,分别用三个年级的数目乘以概率,得到每一个年级要抽取的班数.
(2)由题意知本题是一个古典概型,从6个班中随机地抽取2个班共有C62个等可能的结果,其中这两个班都来自高二、三年级的共有C32个结果,这两个班来自至少有一个来自高一年级的共有C62- C32个结果,得到概率.
解:①从高一、高二、高三年级分别抽取的班级个数3,2,1;
②抽取的6个班中,高一三个班记为:;高二两个班记为:
;高三一个班记为:
,则抽取2个班的所有可能结果为:
,
,
,
,
,
,
,
,
,
,
,
,
,
,
, 共15种.
抽取的2个班中至少有1个来自高一年级,记为事件,则事件
的对立事件
包括:
,
,
,共3种,故
=1-
点评:解决该试题的关键是理解分层抽样的等比例性质,以及古典概型概率中试验的总体数和事件发生个基本事件数。
某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,则n=________.
正确答案
6
总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的间隔为,分层抽样的比例是
,抽取的工程师人数为
·6=
,技术员人数为
·12=
,技工人数为
·18=
,所以n应是6的倍数,36的约数,即n=6,12,18.当样本容量为n+1时,从总体中剔除1个个体,系统抽样的间隔
,因为
必须是整数,所以n只能取6.
某报社做了一次关于“什么是新时代的雷锋精神”的调查,在A,B,C,D四个单位回收的问卷数依次成等差数列,且共回收1000份,因报道需要,再从回收的问卷中按单位分层抽取容量为150的样本,若在B单位抽取30份,则在D单位抽取的问卷是________份.
正确答案
60
由题意依次设在A,B,C,D四个单位回收的问卷数分别为a1,a2,a3,a4,在D单位抽取的问卷数为n,则有=
,解得a2=200,又a1+a2+a3+a4=1000,即3a2+a4=1000,∴a4=400,∴
=
,解得n=60.
现对某校师生关于上海世博会知晓情况进行分层抽样调查。已知该校有教师200人,男学生1200人,女学生1000人。现抽取了一个容量为n的样本,其中妇学生有80人,则n的值等于
正确答案
192
略
某大学为了支援我国西部教育事业,决定从2009应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请用抽签法和随机数表法设计抽样方案.
正确答案
抽签法:
第一步:将18名志愿者编号,编号为1,2,3,…,18.
第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签;
第三步:将18个号签放入一个不透明的盒子里,充分搅匀;
第四步:从盒子中逐个抽取6个号签,并记录上面的编号;
第五步:所得号码对应的志愿者,就是志愿小组的成员.
随机数表法:
第一步:将18名志愿者编号,编号为01,02,03,…,18.
第二步:在随机数表中任选一数作为开始,按任意方向读数,比如第8行第29列的数7开始,向右读;
第三步:从数7开始,向右读,每次取两位,凡不在01—18中的数,或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09.
第四步:找出以上号码对应的志愿者,就是志愿小组的成员.
抽签法:
第一步:将18名志愿者编号,编号为1,2,3,…,18.
第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签;
第三步:将18个号签放入一个不透明的盒子里,充分搅匀;
第四步:从盒子中逐个抽取6个号签,并记录上面的编号;
第五步:所得号码对应的志愿者,就是志愿小组的成员.
随机数表法:
第一步:将18名志愿者编号,编号为01,02,03,…,18.
第二步:在随机数表中任选一数作为开始,按任意方向读数,比如第8行第29列的数7开始,向右读;
第三步:从数7开始,向右读,每次取两位,凡不在01—18中的数,或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09.
第四步:找出以上号码对应的志愿者,就是志愿小组的成员.
某大型企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了180名员工进行调查所得数据如下表所示
对于人力资源部的研究项目,根据上述数据:
(1)估计员工积极支持企业改革人数的比例
(2)能否有99.9%的把握说员工对待企业改革的态度与工作积极性有关?
(3)根据(2)的结论能否提出更好的调查方法来估计该企业中赞成改革的员工的比例?说明理由.
正确答案
(1)调查的180名员工中有70名积极支持企业改革,
因此该企业中积极支持企业改革人数的比例的估计值为=39% …(4分)
(2)K2=180×(50×100-20×10)2÷(70×110×60×120)≈74.81
由于74.81>7.879,所以有99.9%的把握说抽样员工对待企业改革的态度与工作积极性有关. …(9分)
(3)由(2)的结论知该企业中员工是否赞成改革与工作积极性有关,并且从样本中看出该企业中员工工作积极和工作一般中赞成改革的比例有明显差异,因此在调查时可以先确定企业中工作积极和工作一般员工的比例,再把员工分成工作积极和工作一般两层并采用分层抽样方法比简单随机抽样方法要好些. …(12分)
已知某学校高二年级的一班和二班分别有人和
人,某次学校考试中,两班学生
的平均分分别为
,则这两个班学生的数学平无分
为 .
正确答案
略
某高校在2011年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组
[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3,4,5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率.
正确答案
(1)0.3,0.2,0.1
(2)3,2,1
(3)
(1)由题设可知,第组的频率为
, 第
组的频率为
,第
组的频率为
.
(2)第组的人数为
,第
组的人数为
,第
组的人数为
.因为第
,
,
组共有
名学生,所以利用分层抽样在
名学生中抽取
名学生,每组抽取的人数分别为:
第组:
,
第组:
,
第组:
.
所以第,
,
组分别抽取
人,
人,
人.(3)设第
组的
位同学为
,
,
,第
组的
位同学为
,
,第
组的
位同学为
.则从六位同学中抽两位同学有:
共种可能.其中第
组的
位同学为
,
至少有一位同学入选的有:
共
种可能,所以第
组至少有一名学生被甲考官面试的概率为
.
某校共有1200名学生,现采用按性别分层抽样的方法抽取一个容量为200的样本进行健康状况调查,若抽到的男生比女生多10人,则该校男生人数为 。
正确答案
630
略
扫码查看完整答案与解析