- 随机抽样
- 共2422题
将参加数学竞赛的1000名学生编号如下:0001,0002,0003,,1000,打算从中抽取一个容量为50的样本,按系统抽样的办法分成50个部分。如果第一部分编号为0001,0002,
,0020,从中随机抽取一个号码为0015,则第40个号码为
正确答案
0795
略
(10分)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量。产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95),由此得到频率分布直方图,如右图。
(1)请填完整表格;
(2)估算众数,中位数,平均数。
正确答案
(1)
分组
45~55
55~65
65~75
75~85
85~95
频数
4
8
5
2
1
频率
0.2
0.4
0.25
0.1
0.05
(2) 众数为60,中位数62.5,平均数64
解:(1)
分组
45~55
55~65
65~75
75~85
85~95
频数
4
8
5
2
1
频率
0.2
0.4
0.25
0.1
0.05
(2) 众数为60,中位数62.5,平均数64
某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n= .
正确答案
试题分析:因为题中说每人被抽到的可能性都是0.2,则说明是简单随机抽样,每人机会均等,那把要抽的人数设为n,解出n=360.
为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本.
正确答案
见解析
⑴随机地将这1003个个体编号为1,2,3,…,1003.
⑵利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1000能被样本容量50整除,然后再按系统抽样的方法进行.
说明:总体中的每个个体被剔除的概率相等(),也就是每个个体不被剔除的概率相等
采用系统抽样时每个个体被抽取的概率都是
,所以在整个抽样过程中每个个体被抽取的概率仍然相等,都是
一个总体中的1000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数,
(1)当x=24时,写出所抽取样本的10个号码;
(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.
正确答案
(1)由题意此系统抽样的间隔是100,根据x=24和题意得,24+33×1=57,
第二组抽取的号码是157;由24+33×2=90,则在第三组抽取的号码是290,…
故依次是24,157,290,323,456,589,622,755,888,921.
(2)由x+33×0=87得x=87,由x+33×1=87得x=54,由x+33×3=187得x=88…,
依次求的x值可能为21,22,23,54,55,56,87,88,89,90,
某酒厂有甲、乙两条生产线生产同一种型号的白酒.产品在自动传输带上包装传送,每15分钟抽一瓶测定其质量是否合格,分别记录抽查的数据如下(单位:毫升):
甲生产线:508,504,496,510,492,496
乙生产线:515,520,480,485,497,503
问:(1) 这种抽样是何种抽样方法?
(2)分别计算甲、乙两条生产线的平均值与方差,并说明哪条生产线的产品较稳定.
正确答案
(1)这种抽样是在比较多的个体中,
按照一定规律,抽取的样本,是系统抽样
(2)
.
X
甲=501,S甲2=(49+9+25+81+81+25)=45
.
X
乙=500,S乙2=(225+400+400+225+9+9)≈211.3
∵s甲2<s乙2
∴甲生产线的产品稳定.
两台机床同时生产直径为10的零件,在自动传送带上每隔15分钟抽取一个进行测量,结果如下:
(1)这种抽样方法是哪一种?
(2)估计甲、乙两台机床的产品的平均数与方差,并说明哪台机床较稳定?
正确答案
(1)由题意知这个抽样是在自动包装传送带上每隔15分钟抽取一包产品,
是一个具有相同间隔的抽样,并且总体的个数比较多,
这是一个系统抽样;
(2)=10,
=10;
S甲2=[(10-10)2+(9.8-10)2+(10-10)2+(10.2-10)2]=
(0+0.03+0+0.04)=0.02
S乙2=[(10.1-10)2+(10-10)2+(9.9-10)2+(10-10)2]=
(0.01+0+0.01+0)=0.005
∴S甲2>S乙2
∴乙机床加工这种零件较稳定.
某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:86、72、92、78、77; 乙:82、91、78、95、88
(1)这种抽样方法是哪一种?
(2)将这两组数据用茎叶图表示;
(3)将两组数据比较,说明哪个车间产品较稳定.
正确答案
(1)因为间隔时间相同,故是系统抽样.
(2)茎叶图如下:
.
(3)因为=
(86+72+92+78+77)=81,
=
(82+92+78+95+88)=87,
所以s甲2=(52+92+92+72+42)=50.4,s乙2=
(52+52+92+82+12)=39.2,
而s甲2>s乙2,所以乙车间产品较稳定.
一个总体中100个个体的编号为0,1,2,3,…,99,并依次按编号分为10个小组,组号为0,1,2,…,9,要用系统抽样的方法抽取一个容量为10的样本,规定如果第0组(号码0~9)随机抽取的号码为l,那么依次错位地抽取后面各组的号码,即第k组中抽取的号码的个位数为l+k或l+k-10(如果l+k≥10),若l=6,则所抽取的10个号码依次是______.
正确答案
由题意,第0组抽取的号码为6;则第1组抽取的号码的个位数为6+1=7,所以选17;
第2组抽取的号码的个位数为7+1=8,所以选28;第3组抽取的号码的个位数为8+1=9,所以选39;
第4组抽取的号码为9+1=10-10=0,所以选取40;第5组抽取的号码的个位数为0+1=1,所以选51;
第6组抽取的号码的个位数为1+1=2,所以选62;第7组抽取的号码的个位数为2+1=3,所以选73;
第8组抽取的号码的个位数为3+1=4,所以选84;第9组抽取的号码的个位数为4+1=5,所以选95.
故答案为6,17,28,39,40,51,62,73,84,95.
采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为______.
正确答案
由960÷32=30,故由题意可得抽到的号码构成以9为首项、以30为公差的等差数列,
且此等差数列的通项公式为an=9+(n-1)30=30n-21.
由 451≤30n-21≤750 解得 15.7≤n≤25.7.
再由n为正整数可得 16≤n≤25,且 n∈z,
故做问卷B的人数为10,
故答案为:10.
扫码查看完整答案与解析