- 圆锥曲线与方程
- 共2033题
20. 已知椭圆(a>b>0)的左焦点为F,离心率为
,过点F且与x轴垂直的直线被椭圆截得的线段长为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设A、B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若·
+
·
=7,求k的值.
正确答案
(1)+=1;(2)
解析
试题分析:本题属于直线和圆锥曲线的位置关系,题目的难度是逐渐由易到难,
(1)根据题目已知条件构造方程组即可求出;
(2)设出直线的方程,与第一问所求的椭圆方程联立起来消元后得到一个一元二次方程,再应用设而不求的方法得到一个方程就可以解出来。解: (1)设F(-c,0),由=,知a=c.过点F且与x轴垂直的直线为x=-c,
代入椭圆方程+=1,解得y=±b,
于是b= ,解得b=,
又a2-c2=b2,从而可得a=,c=1,
所以椭圆的方程为+=1. (2)设点C(x1,y1),D(x2,y2),由F(-1,0)得直线CD的方程为y=k(x+1),
由方程组 消去y,整理得(2+3k2)x2+6k2x+3k2-6=0.
因为直线过椭圆内的点,无论k为何值,直线和椭圆总相交.
由根与系数的关系可得: 则x1+x2=-,x1x2=,因为A(-,0),B(,0),所以
·+·=(x1+,y1)·(-x2,-y2)+(x2+,y2)·(-x1,-y1)
=6-2x1x2-2y1y2=6-2x1x2-2k2(x1+1)(x2+1)
=6-(2+2k2)x1x2-2k2(x1+x2)-2k2
=6+, 由已知得6+=7,解得
考查方向
解题思路
本题考查直线和圆锥曲线的位置关系,解题步骤如下:
(1)根据题目已知条件构造方程组即可求出;
(2)设出直线的方程,与第一问所求的椭圆方程联立起来消元后得到一个一元二次方程,再应用设而不求的方法得到一个方程就可以解出来。
易错点
不会使用设而不求的方法去解答。
知识点
20.已知椭圆E:的四个顶点构成一个面积为
的四边形,该四边形的一个内角为60°.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线l与椭圆E相交于A,B两个不同的点,线段AB的中点为C,O为坐标原点,若△OAB面积为,求
的最小值.
正确答案
(1);(2)
解析
试题分析:本题属于直线与椭圆的位置关系,题目的难度是逐渐由易到难,
(1)直接根据题意构造方程组来求解;
(2)分斜率存在和不存在2种情况分类讨论,再利用设而不求的方法来计算出最小值。
(Ⅰ)由题解得
,
所以椭圆E的方程为.
(Ⅱ)(1)当l的斜率不存在时,A,B两点关于x轴对称,则,
,
由在椭圆上,则
,而
,解得
,
,
可知,所以
.
(2)当l的斜率存在时,设直线l:,
联立方程组消去y得
,
由,得
,
则,
,(*)
,
原点O到直线l的距离,
△OAB的面积,整理得
,即
,
所以,即
,满足
,
可知,结合(*)得
,
,
则C,所以
,
由于,则
,当且仅当
,即k=0时,等号成立,故
,
综上所述,的最小值为
.
考查方向
解题思路
本题考查直线与椭圆的位置关系,解题步骤如下:
(1)直接根据题意构造方程组来求解;
(2)分斜率存在和不存在2种情况分类讨论,再利用设而不求的方法来计算出最小值。
易错点
第2问计算量大容易出错。
知识点
如图,在平面直角坐标系中,已知
是椭
上的一点,从原点
向圆
作两条切线,分别交椭圆于点
.
24.若点在第一象限,且直线
互相垂直,求圆
的方程;
25.若直线的斜率存在,并记为
,求
的值;
正确答案
(1);
解析
(1)由圆的方程知圆
的半径
,因为直线
互相垂直,且和圆
相切,所以
,即
①又点
在椭圆
上,所以
②
联立①②,解得,所以,所求圆
的方程为
.
考查方向
解题思路
先根据题中条件求出圆心的坐标,后即可得到圆的方程;
易错点
不知题中给出的直线是切线,且互相垂直如何使用导致不能得到关于圆心的方程;
正确答案
(2)
解析
(2)因为直线和
都与圆
相切,所以
,
,化简得
,因为点
在椭圆
上,所以
,
即,所以
.
考查方向
解题思路
根据直线和圆相切得,
,化简得到
,后消元即可得到答案。
易错点
不会化简,
得到
。
已知曲线C的方程是(m>0,n>0),且曲线C过A(
,
),B(
,
)两点,O为坐标原点.
23.求曲线C的方程;
24.设M(x1,y1),N(x2,y2)是曲线C上两点,向量p=(x1,
y1),q=(
x2,
y2),且p·q=0,若直线MN过(0,
),求直线MN的斜率.
正确答案
见解析
解析
解:(1)由题可得:,解得
所以曲线方程为
考查方向
解题思路
1)根据题意联立解方程求出曲线方程
2)写出直线方程,与曲线联立,得到韦达定理
3)根据p·q=0,得到x1,x2的关系
4)解方程得到结果
易错点
本题较简单,一般在计算出错和对p·q=0处理出错
正确答案
见解析
解析
解:
(2)设直线的方程为
,代入椭圆方程为
得:
∴
,
∴=
∴
即
考查方向
解题思路
1)根据题意联立解方程求出曲线方程
2)写出直线方程,与曲线联立,得到韦达定理
3)根据p·q=0,得到x1,x2的关系
4)解方程得到结果
易错点
本题较简单,一般在计算出错和对p·q=0处理出错
15.椭圆的右焦点F(c,0)关于直线
的对称点Q在椭圆上,则椭圆的离心率是 .
正确答案
解析
试题分析:利用点F关于直线的对称点Q在椭圆上,由a,b,c的关系列方程求出椭圆的离心率。
设Q(m,n),由题意可得,解得:
,代入椭圆方程可得:
,整理可得
,
可得,.即
,
可得,解得
.
故答案为:.
考查方向
解题思路
设出Q的坐标,利用对称知识,集合椭圆方程推出椭圆几何量之间的关系,然后求解离心率即可.
易错点
点关于直线的对称点的求法,.
知识点
8.如图,焦点在轴上的椭圆
(
)的左、右焦点分别为
、
,
是椭圆上位于第一象限内的一点,且直线
与
轴的正半轴交于
点,△
的内切圆在边
上的切点为
,若
,则该椭圆的离心率为( )
正确答案
解析
如右图所示,设另外两个切点分别为M,N,由及圆的切线长相等可得
,所以
,由
知
,故本题选择D选项。
考查方向
解题思路
根据切线长相等及椭圆的定义先求出实数a,进而求出椭圆的离心率。
易错点
不知如何利用已知信息导致本题没有思路。
知识点
20. 如图,已知椭圆
,离心率
,
是椭圆上的任一点,从原点
向圆
:
作两条切线,分别交椭圆于点
.
(Ⅰ)若过点的直线与原点的距离为
,求椭圆方程;
(Ⅱ)在(Ⅰ)的条件下,若直线的斜率存在,并记为
.试问
是否为定值?若是,求出该值;若不是,说明理由.
正确答案
(1);(2)
为定值。
解析
试题分析:本题属于直线与圆锥曲线的问题,
(1)由已知条件构造方程组求解(2)用设而不求的方法来解决.
(Ⅰ)因为离心率,所以
,而
所以
,即
① 设经过点
的直线方程为
即
因为直线与原点的距离为
所以,整理得:
② 由①②得
所以椭圆的方程为
(Ⅱ)解:因为直线, 与圆M相切,由直线和圆相切的条件:
,可得
, 平方整理,可得
,
, 所以
是方程
的两个不相等的实数根,
,因为点
在椭圆C上,所以
,即
,所以
为定值;
考查方向
解题思路
本题考查直线与圆锥曲线的问题,解题步骤如下:
由已知条件构造方程组求解。
用设而不求的方法来解决。
易错点
不会利用设而不求的思想来解答。
知识点
如图,椭圆E:(a>b>0)的离心率是
,点(0,1)在短轴CD上,且
=-1
25.求椭圆E的方程;
26.设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得为定值?若存在,求λ的值;若不存在,请说明理由.
正确答案
.
解析
(I)由已知,点C,D的坐标分别为(0,-b),(0,b)
又点P的坐标为(0,1),且=-1
于是,解得a=2,b=
所以椭圆E方程为.
考查方向
解题思路
1.第(1)问直接根据题中给出的条件求解即可;
易错点
1.第(1)问的运算出错;
正确答案
λ=-1
解析
当直线AB斜率存在时,设直线AB的方程为y=kx+1
A,B的坐标分别为(x1,y1),(x2,y2)
联立,得(2k2+1)x2+4kx-2=0
其判别式△=(4k)2+8(2k2+1)>0
所以
从而=x1x2+y1y
2+λ[x1x2+(y1-1)(y2-1)]
=(1+λ)(1+k2)x1x2+k(x1+x2)+1
=
=-
所以,当λ=1时,-=-3
此时,=-3为定值
当直线AB斜率不存在时,直线AB即为直线CD
此时=-2-1=-3
故存在常数λ=-1,使得为定值-3.
考查方向
解题思路
.第(2)问先联立消元导出韦达定理后代人要求的式子得到定值即可。
易错点
第(2)问的运算出错;第(2)问的=-
不会计算如何为定值。
如图,椭圆(
>
>0)的左右焦点分别为
,
,且过
的直线交椭圆于P,Q两点,且PQ
.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)
26.若||=2+
,|
|=2-
,求椭圆的标准方程.
27.若|PQ|=|
|,且
,试确定椭圆离心率的取值范围.
正确答案
.
解析
试题分析:由椭圆的定义知可求出
的值,再由
及勾股定理可求得
的值,最后由
求得
的值,从而根据椭圆的标准方程
得到结果.
试题解析:由椭圆的定义,
设椭圆的半焦距为,由已知
,因此
即
从而
故所求椭圆的标准方程为.
考查方向
解题思路
本题椭圆的定义、标准方程、简单几何性质的应用,应用椭圆的定义及基本量间的关第易于求解,本题属于较难题,
易错点
注意运算的准确性.
正确答案
.
解析
试题分析:由,得
由椭圆的定义,,进而
于是.解得
,
故.再注意到
从而
,两边除以
,得
,若记
,则上式变成
.再由
,并注意函数的单调性,即可求得离心率
的取值范围。
试题解析:(2)如(1))图,由,得
由椭圆的定义,,进而
于是.
解得,故
.
由勾股定理得,
从而,
两边除以,得
,
若记,则上式变成
.
由,并注意到
关于
的单调性,得
,即
,
进而,即
.
考查方向
解题思路
应用条件、椭圆的定义及勾股定理建军立离心率与的关系式,从而将离心率
表示成为
的函数,然后得用函数相关知识,求其值域,即是所求的范围,本题属于较难题,
易错点
函数思想方法的应用.
20.如图,已知椭圆的四个顶点分别为
,左右焦点分别为
,若圆C:
(
)上有且只有一个点
满足
,
(1)求圆C的半径;
(2)若点为圆C上的一个动点,直线
交椭圆于点
,
交直线于点
,求
的最大值;
正确答案
(1);(2)
解析
试题分析:本题属直线与圆锥曲线的位置关系的问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求;(2)利用设而不求的方法再结合基本不等式来求解。
试题解析::(1)依题意得,
设点,由
得:
,化简得
,
∴点的轨迹是以点
为圆心,
为半径的圆, 又∵点
在圆
上并且有且只有一个点
,即两圆相切,
当两圆外切时,圆心距,成立
当两圆内切时,圆心距,不成立
∴ (2)设直线
为
,
由得,
联立
,消去
并整理得:
,
解得点的横坐标为
,
把直线:
与直线
:
联立解得点
横坐标
8分
所以 11分
(∵求最大值,显然为正才可能取最大,)
当且仅当时,取等号,
∴的最大值
为
;
考查方向
解题思路
本题考直线与圆锥曲线的位置关系,解题步骤如下:(1)直接按照步骤来求;(2)利用设而不求的方法再结合基本不等式来求解。
易错点
计算量大容易算错。
知识点
已知为椭圆
上的一个动点,弦
分别过左右焦点
,且当线段
的中点在
轴上时,
.
24.求该椭圆的离心率;
25.设,试判断
是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
正确答案
.e=
解析
当线段A的中点在y轴上时,AC垂直于
轴,
为直角三角形.
因为cos∠,所以|
|=3|
|,易知|
|=
,由椭圆的定义|
|+|
|=2a
,所以e=
考查方向
解题思路
先证出为直角三角形,求出
,再由定义得到a,b方程, 从中解出离心率
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案
+
是定值6
解析
由24得椭圆方程为,焦点坐标为
,当AB、AC的斜率都存在时,设,A(
)、B(
)、C(
)
则直线AC的方程为y=, 代入椭圆方程得,
=0
又
,同理,
,
+
=6
(2) 若AB⊥x轴,则=1,
,这时也有.
+
=6.
综上所述,+
是定值6
考查方向
解题思路
由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,
,验证是否为定值。
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
20. 如图:A,B,C是椭圆的顶点,点
为椭圆的右焦点,离心率为
,且椭圆过点
.
(I)求椭圆的方程;
(II)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为,证明:
.
正确答案
见解析
解析
考查方向
解题思路
1)根据离心率得到a,b的关系,根据点在椭圆上联立求出椭圆方程
2)设点p,根据要求求出直线AP,与直线BC求出点D
3)根据直线CP得到点E
4)使用两点间斜率公式得到DE斜率,化简得到结论
易错点
本题主要有以下几个错误:
1)椭圆方程求错
2)找不到有效突破点,导致运算量加大,无法得出理想结果
知识点
已知椭圆的离心率为
,它的四个顶点构成的四边形的面积为
.
27.求椭圆的方程;
28.设椭圆的右焦点为
,过
作两条互相垂直的直线
,直线
与椭圆
交于
两点,直线
与直线
交于
点.
(i)求证:线段的中点在直线
上;
(ii)求的取值范围.
正确答案
(Ⅰ).
解析
(Ⅰ)设椭圆的半焦距为
,则由题意可知
.
∵椭圆四个顶点构成的四边形的面积为
,∴
.
由得
.
∴椭圆的方程为
.
考查方向
解题思路
直接根据椭圆的基本量直接带入求解即可;
易错点
在运算时算数出错;
正确答案
(Ⅱ)(i)略;(ii).
解析
(Ⅱ)(i)由(Ⅰ)知,椭圆的方程为
,它的右焦点为
.
(1)当直线的斜率不存在时,直线
的方程为
,直线
的方程为
,此时线段
的中点为
,点
的坐标为
,直线
的方程为
,线段
的中点在直线
上.
(2)当直线的斜率存在时,若直线
的斜率为
,则直线
的方程为
,与
不相交,所以直线
的斜率不为
.设直线
的方程为
,则直线
的方程为
.
设两点的坐标分别为
,线段
的中点为
.
由得
.
判别式,
.
则,
.
由得点
的坐标为
,∴直线
的斜率为
,
∴直线的方程为
.∴
,
∴线段的中点在直线
上.
(ii)(1)当直线的斜率不存在时,由
得,
.
∴,此时
.
(2)由(i)知直线的斜率不为
,所以当直线
的斜率存在且不为
时,
,
.
.
令,
则∵
,∴
,
,∴
.
此时.∴
的取值范围为
.
考查方向
易错点
不会构造函数,导致无法入手。
【解题思路
第(1)小问先求出线段的中点为
,然后求直线ON的方程带入即可。
第(2)问先求,构造函数后求函数的值域即可。
已知为椭圆
上的一个动点,弦
分别过左右焦点
,且当线段
的中点在
轴上时,
.
24.求该椭圆的离心率;
25.设,试判断
是否为定值?若是定值,求出该定值,并给出证明;若不是定值,请说明理由.
正确答案
.e=
解析
当线段A的中点在y轴上时,AC垂直于
轴,
为直角三角形.
因为cos∠,所以|
|=3|
|,易知|
|=
,由椭圆的定义|
|+|
|=2a
,所以e=
考查方向
解题思路
先证出为直角三角形,求出
,再由定义得到a,b方程, 从中解出离心率
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
正确答案
+
是定值6
解析
由24得椭圆方程为,焦点坐标为
,当AB、AC的斜率都存在时,设,A(
)、B(
)、C(
)
则直线AC的方程为y=, 代入椭圆方程得,
=0
又
,同理,
,
+
=6
(2) 若AB⊥x轴,则=1,
,这时也有.
+
=6.
综上所述,+
是定值6
考查方向
解题思路
由24得到含有b的椭圆方程,根据题意对直线AB、AC的斜率进行分为讨论,设出坐标,联立方程组,利用根与系数关系,结合向量关系式,将向量关系转化为坐标关系,用A的坐标及b,表求,
,验证是否为定值。
易错点
解析几何易出现对于直线方程的分类讨论上的错,其次就是直线与曲线联系以后,寻求向量、坐标、常数、参数之间的联系时,易出现转化和计算、代数整理上的错误。
12.一个圆经过椭圆的三个顶点,且圆心在
轴的正半轴上,则该圆的标准方程为 .
正确答案
解析
设圆心为(,0),则半径为
,则
,解得
,故圆的方程为
。
考查方向
圆和椭圆的基本知识.
解题思路
根据椭圆的标准方程,利用椭圆的性质,求出三个顶点的坐标,在直角坐标系中运用勾股定理求出圆心坐标、半径,代入圆的标准方程。
易错点
因为圆心在x轴的正半轴上,所以解方程时,注意舍去不合题意的根。
教师点评
本题属于简单题,意在考查学生对椭圆的标准方程和圆的标准方程知识掌握程度。
知识点
扫码查看完整答案与解析