- 几何概型及其概率计算公式
- 共1904题
设有关于x的一元二次方程x2+2ax+b2=0.
(Ⅰ)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,记方程有两不等实根为事件A,方程没有实数根记为事件B,求事件A+B的概率
(Ⅱ)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.
正确答案
解:(Ⅰ)由题意可知,总的基本事件有:
(0,0)、(0,1)、(0,2)、(1,0)、(1,1)、(1,2)、
(2,0)、(2,1)、(2,2)、(3,0)、(3,1)、(3,2)共有12个…(1分)
事件A发生,要求△=4a2-4b2>0,即a2>b2,
符合的基本事件有(1,0)、(2,0)、
(2,1)、(3,0)、(3,1)、(3,2),共6个…(2分)
故P(A)=…(3分)
事件B发生要求△=4a2-4b2<0,即a2<b2,符合的基本事件有:(0,1)、(0,2)、
(1,2)共3个…(4分)
故P(B)=…(5分)
又事件A、B互斥,
∴P(A+B)=P(A)+P(B)=…(6分)
(Ⅱ)试验的全部约束所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}.
构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}.
所以所求的概率为==
…(12分)
解析
解:(Ⅰ)由题意可知,总的基本事件有:
(0,0)、(0,1)、(0,2)、(1,0)、(1,1)、(1,2)、
(2,0)、(2,1)、(2,2)、(3,0)、(3,1)、(3,2)共有12个…(1分)
事件A发生,要求△=4a2-4b2>0,即a2>b2,
符合的基本事件有(1,0)、(2,0)、
(2,1)、(3,0)、(3,1)、(3,2),共6个…(2分)
故P(A)=…(3分)
事件B发生要求△=4a2-4b2<0,即a2<b2,符合的基本事件有:(0,1)、(0,2)、
(1,2)共3个…(4分)
故P(B)=…(5分)
又事件A、B互斥,
∴P(A+B)=P(A)+P(B)=…(6分)
(Ⅱ)试验的全部约束所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}.
构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}.
所以所求的概率为==
…(12分)
欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆,中间有边长为1cm的正方形孔,若随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴正好落入孔中的概率是( )
正确答案
解析
解:如图所示:
∵S正=1,S圆=π=
∴P==
=
故选:A
在区间[-1,3]是任取实数a,使得关于x的方程x2-2x+a=0有实根的概率为______.
正确答案
0.5
解析
解:∵方程x2-2x+a=0有实根,
∴4-4a≥0,
∴a≤1时方程有实根,
∵在区间[-1,3]上任取一实数a,区间长度为4,[-1,1]的区间长度为2,
∴所求的概率为P==0.5;
故答案为:0.5.
(理科) 为了近似求出圆周率的值,有人设计如下方法来进行随机模拟:如图,双曲线
-
=1(a,b>0)的两顶点为A1、A2,虚轴两端点为B1、B2,两焦点为F1、F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A、B、C、D.现在随机撒一把豆子(设其总数为N1)于菱形F1B1F2B2内,设落入圆O内的豆子数为N2,则圆周率π≈______(试用N1,N2表示).
正确答案
.
解析
解:有题意可得,菱形的面积是2cb=2,
圆的半径是a,则圆的面积是πa2,
根据几何概型的概率公式当得到:=
,
所以.
故答案为:.
向边长为1的正方形内随机抛掷一粒芝麻,则芝麻落在正方形中心和芝麻不落在正方形中心的概率分别为______.
正确答案
0,1
解析
解:落在正方形的中心概率为0,不落在正方形的中心概率为1.
故答案为:0,1.
扫码查看完整答案与解析