热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题

已知抛物线的顶点在坐标原点,焦点为F(1,0),点P是点F关于y轴的对称点,过点P的动直线ι交抛物线与A,B两点.

(1)若△AOB的面积为,求直线ι的斜率;

(2)试问在x轴上是否存在不同于点P的一点T,使得TA,TB与x轴所在的直线所成的锐角相等,若存在求出定点T的坐标,若不存在说明理由.

正确答案

(1)由题意知:抛物线方程为:y2=4x且P(-1,0),

设A(x1,y1),B(x2,y2),

由已知直线l斜率存在,设l:y=k(x+1)(k≠0),代入y2=4x得,k2x2+(2k2-4)x+k2=0,

由△>0得-1<k<1,

|AB|=,h=

|AB|h=,得k=±,满足△>0,

(2)假设存在T(a,0)满足题意,

因为TA,TB与x轴所在的直线所成的锐角相等,

所以直线TA,TB的斜率之和为0,则

kAT+kBT=+=

==0,

∴k[2x1x2-(a-1)(x1+x2)-2a]=0,即k[2-(a-1)-2a]=0,

整理得:a-1=0,解得a=1,

∴存在T(1,0).

1
题型:简答题
|
简答题

动圆C过定点F(,0),且与直线x=-相切,其中p>0.设圆心C的轨迹Γ的程为F(x,y)=0

(1)求F(x,y)=0;

(2)曲线Γ上的一定点P(x0,y0)(y0≠0),方向向量=(y0,-p)的直线l(不过P点)与曲线Γ交与A、B两点,设直线PA、PB斜率分别为kPA,kPB,计算kPA+kPB

(3)曲线Γ上的两个定点P0(x0,y0)、Q0(x0,y0),分别过点P0,Q0作倾斜角互补的两条直线P0M,Q0N分别与曲线Γ交于M,N两点,求证直线MN的斜率为定值.

正确答案

(1)过点C作直线x=-的垂线,垂足为N,

由题意知:|CF|=|CN|,即动点C到定点F与定直线x=-的距离相等,

由抛物线的定义知,点C的轨迹为抛物线,

其中F(,0)为焦点,x=-为准线,

所以轨迹方程为y2=2px(p>0);       

(2)设 A(x1,y1)、B(x2,y2

不过点P的直线l方程为y=-x+b,

得y2+2y0y-2y0b=0,

则y1+y2=-2y0

kAP+kBP=+

=+

=+

==0.

(3)设M(x1,y1),N(x2,y2),

则kMN===(***)                    

设MP0的直线方程为为y-y0=k(x-x0)与曲线y2=2px的交点P0(x0,y0),M(x1,y1).

,y2-y+-2px0=0的两根为y0,y1

则y0+y1=,∴y1=-y0

同理y0+y2=,得y2=--y0

∴y1+y2=-(y0+y0),

代入(***)计算得kMN=-.是定值,命题得证

1
题型:简答题
|
简答题

抛物线C1:y2=4mx(m>0)的准线与x轴交于F1,焦点为F2,以F1、F2为焦点、离心率e=的椭圆C2与抛物线C1的一个交点为P.

(1)当m=1时求椭圆的方程;

(2)在(1)的条件下,直线L经过椭圆C2的右焦点F2与抛物线L1交于A1,A2两点.如果弦长|A1A2|等于△PF1F2的周长,求直线L的斜率;

(3)是否存在实数m,使△PF1F2的边长是连续的自然数.

正确答案

(1)m=1时,抛物线C1:y2=4x,焦点为F2 (1,0). 由于椭圆离心率e=,c=1,

故 a=2,b=,故所求的椭圆方程为  +=1.

(2)由于△PF1F2周长为 2a+2c=6,故弦长|A1A2|=6,设直线L的斜率为k,则直线L的方程为 y-0=k(x-2),

代入抛物线C1:y2=4x 化简得 k2x2-(4k2+4)x+4k2=0,∴x1+x2= 4+,x1x2=4,

∴|A1A2|== =6,解得  K=±

(3)假设存在实数m,△PF1F2的边长是连续自然数,经分析在△PF1F2中|PF1|最长,|PF2|最短,令|F1F2|=2c=2m,

则|PF1|=2m+1,|PF2|=2m-1. 由抛物线的定义可得|PF2|=2m-1=xP-(-m),∴xP=m-1.

把P(m-1,)代入椭圆+=1,解得m=3.故存在实数m=3 满足条件.

1
题型:简答题
|
简答题

已知函数f(x)=x3-2x2+ax(a∈R,x∈R)在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.

(Ⅰ)求a的值和切线l的方程;

(Ⅱ)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围.

正确答案

(Ⅰ)∵f(x)=x2-2x2+ax,

∴f/(x)=x2-4x+a.(2分)

∵在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直,

∴x2-4x+a=-1有且只有一个实数根.

∴△=16-4(a+1)=0,

∴a=3.(4分)

∴x=2,f(2)=

∴切线l:y-=-(x-2),即3x+3y-8=0.(7分)

(Ⅱ)∵f/(x)=x2-4x+3=(x-2)2-1≥-1.(9分)

∴tanθ≥-1,(10分)

∵θ∈[0,π),

∴θ∈[0,)∪[,π)(13分)

1
题型:简答题
|
简答题

已知实数x、y满足(x-2)2+(y-1)2=1,求z=的最大值与最小值.

正确答案

zmax,zmin

表示过点A(0,-1)和圆(x-2)2+(y-1)2=1上的动点(x,y)的直线的斜率.如右图,

当且仅当直线与圆相切时,直线的斜率分别取得最大值和最小值.设切线方程为y=kx-1,即kx-y-1=0,则=1,解得k=.因此,zmax,zmin

下一知识点 : 斜率的计算公式
百度题库 > 高考 > 数学 > 直线的倾斜角与斜率

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题