- 直线的倾斜角与斜率
- 共895题
如下图所示,在直角坐标系中,射线
在第一象限,且与
轴的正半轴成定角
,动点
在射线
上运动,动点
在
轴的正半轴上运动,
的面积为
.
(Ⅰ)求线段中点
的轨迹
的方程;
(Ⅱ)是曲线
上的动点,
到
轴的距离之和为
,
设为
到
轴的距离之积.问:是否存在最大的常数
,
使恒成立?若存在,求出这个
的值;若不存在,请说明理由.
正确答案
(1)(
)(2)
(1)射线.
设(
),
则,
又因为的面积为
,所以
;
消去得点
的轨迹
的方程为:
(
).
(2)设,则
,
所以
令则
,所以有
,
则有:当时,
,
所以在
上单调递减,
所以当时,
,
所以存在最大的常数使
恒成立.
从等腰直角△上,按图示方式剪下两个正方形,其中
,∠
求这两个正方形的面积之和的最小值
正确答案
如图:
设两正方形边长分别为
则,
而,故
,
两正方形面积之和为,
故两正方形面积之和最小值为
以直角坐标系的原点为极点,
轴的正半轴为极轴,已知点
的直角坐标为
,点
的极坐标为
,若直线
过点
,且倾斜角为
,圆
以
为 圆心、
为半径。
(I) 写出直线的参数方程和圆
的极坐标方程;
(Ⅱ)试判定直线和圆
的位置关系。
正确答案
(Ⅰ)直线的参数方程是
,(
为参数)
圆的极坐标方程是
。 ………………5分
(Ⅱ)圆心的直角坐标是,直线
的普通方程是
,
圆心到直线的距离,所以直线
和圆
相离
略
设椭圆的中心在原点,坐标轴为对称轴, 一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为-4,求此椭圆方程、离心率、准线方程及准线间的距离.
正确答案
设椭圆的方程为或,则,解之得:,b=c=4.则所求的椭圆的方程为或,离心率;准线方程,两准线的距离为16.
设所求椭圆方程为或.根据题意列出关于a,b,c方程组,从而求出a,b,c的值,再求离心率、准线方程及准线间的距离.点评:充分认识椭圆中参数a,b,c,e的意义及相互关系,在求标准方程时,已知条件常与这些参数有关.
已知双曲线的方程为, 直线通过其右焦点F2,且与双曲线的右支交于A、B两点,将A、B与双曲线的左焦点F1连结起来,求|F1A|·|F1B|的最小值
正确答案
设A(x1,y1),B(x2,y2),A到双曲线的左准线x= ─= ─的距离
d=|x1+|=x1+,由双曲线的定义,=e=,∴|AF1|=(x1+)=x1+2,
同理,|BF1|=x2+2,∴|F1A|·|F1B|=(x1+2)(x2+2)=x1x2+(x1+x2)+4 (1)
双曲线的右焦点为F2(,0),
(1)当直线的斜率存在时设直线AB的方程为:y=k(x─),
由消去y得 (1─4k2)x2+8k2x─20k2─4=0,
∴x1+x2=, x1x2= ─, 代入(1)整理得
|F1A|·|F1B|=+4=+4=+4=+
∴|F1A|·|F1B|>;
(2)当直线AB垂直于x轴时,容易算出|AF2|=|BF2|=,
∴|AF1|=|BF1|=2a+=(双曲线的第一定义), ∴|F1A|·|F1B|=
由(1), (2)得:当直线AB垂直于x轴时|F1A|·|F1B| 取最大值
点拨与提示:由双曲线的定义得:|AF1|=(x1+)=x1+2,|BF1|=x2+2,
|F1A|·|F1B|=(x1+2)(x2+2)=x1x2+(x1+x2)+4 ,将直线方程和双曲线的方程联立消元,得x1+x2=, x1x2= ─.本题要注意斜率不存在的情况.
扫码查看完整答案与解析