热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题

函数y=cos2x是(  )

A最小正周期是π的偶函数

B最小正周期是π的奇函数

C最小正周期是2π的偶函数

D最小正周期是2π的奇函数

正确答案

A

解析

解:函数y=cos2x=cos2x+,所以函数的周期为:=π;

因为f(-x)=cos(-2x)+=cos2x+=f(x),

所以函数是偶函数;

故选A.

1
题型:填空题
|
填空题

函数y=cos(6x+3)的最小正周期是______

正确答案

解析

解:函数y=cos(6x+3)的最小正周期是T===

故答案为:

1
题型:填空题
|
填空题

函数y=sin(3x-)的周期是______,振幅是______

正确答案

解析

解:函数y=sin(3x-)的周期T=,振幅为

故答案为:

1
题型: 单选题
|
单选题

下列函数中,周期为π的是(  )

Ay=cos4x

By=tan2x

Cy=sin2x

D

正确答案

C

解析

解:由于函数y=cos4x的周期为=,故排除A;由于函数y=tan2x的周期为,故排除B;由于函数y=sin2x的周期=π,满足条件;

由于函数y=sin的周期为=4π,故排除D,

故选:C.

1
题型:填空题
|
填空题

若函数的图象的相邻两条对称轴的距离是2π,则ω的值为 ______

正确答案

解析

解:函数的图象的相邻两条对称轴的距离是2π,就是三角函数的半周期为:2π

因为T==4π,所以ω=

故答案为:

1
题型:填空题
|
填空题

函数的最小正周期为______

正确答案

π

解析

解:函数

∵ω=2,

∴T==π.

故答案为:π

1
题型:简答题
|
简答题

已知函数f(x)=2cosxcos(-x)-sin2x+sinxcosx.

(Ⅰ)求f(x)的最小正周期;

(Ⅱ)设,求f(x)的值域.

正确答案

解:(Ⅰ)∵f(x)=2cosxcos(-x)-sin2x+sinxcosx

=(cos2x-sin2x)+2sinxcosx

=

=

∴f(x)的最小正周期为π.

(Ⅱ)∵

f(x)的值域为

解析

解:(Ⅰ)∵f(x)=2cosxcos(-x)-sin2x+sinxcosx

=(cos2x-sin2x)+2sinxcosx

=

=

∴f(x)的最小正周期为π.

(Ⅱ)∵

f(x)的值域为

1
题型:简答题
|
简答题

已知函数f(x)=2sinxcosx+2cos2x+1.

(1)求函数f(x)的最小正周期及单调减区间;

(2)f(x0)=,x0∈[],求cos2x0的值.

正确答案

解:(1)∵函数f(x)=2sinxcosx+2cos2x+1=sin2x+cos2x+2=2sin(2x+)+2,

故函数的最小正周期为=π.

令2kπ+≤2x+≤2kπ+,k∈z,求得 kπ+≤x≤kπ+,故函数的减区间为[kπ+,kπ+],k∈z.

(2)∵f(x0)=2sin(2x0+)+2=,∴sin(2x0+)=,x0∈[],∴2x0+∈[],∴cos(2x0+)=-

∴cos2x0=cos[(2x0+)-]=cos(2x0+)cos-sin(2x0+)sin=-×-×=-

解析

解:(1)∵函数f(x)=2sinxcosx+2cos2x+1=sin2x+cos2x+2=2sin(2x+)+2,

故函数的最小正周期为=π.

令2kπ+≤2x+≤2kπ+,k∈z,求得 kπ+≤x≤kπ+,故函数的减区间为[kπ+,kπ+],k∈z.

(2)∵f(x0)=2sin(2x0+)+2=,∴sin(2x0+)=,x0∈[],∴2x0+∈[],∴cos(2x0+)=-

∴cos2x0=cos[(2x0+)-]=cos(2x0+)cos-sin(2x0+)sin=-×-×=-

1
题型:简答题
|
简答题

已知函数f(x)=-3cos(x-)-1.

(1)求函数f(x)的周期;

(2)求函数f(x)的对称轴和对称中心;

(3)若x∈[0,π],求函数f(x)的值域.

正确答案

解:(1)函数f(x)=-3cos(x-)-1的周期为=2π.

(2)令x-=kπ,k∈z,求得x=2kπ+,故函数的图象的对称轴为x=2kπ+,k∈z.

x-=kπ+,k∈z,求得x=2kπ+,故函数的图象的对称中心为 (2kπ+,0),k∈z.

(3)若x∈[0,π],则 (x-)∈[-],cos(x-)∈[,1],故函数f(x)的值域为[-4,--1].

解析

解:(1)函数f(x)=-3cos(x-)-1的周期为=2π.

(2)令x-=kπ,k∈z,求得x=2kπ+,故函数的图象的对称轴为x=2kπ+,k∈z.

x-=kπ+,k∈z,求得x=2kπ+,故函数的图象的对称中心为 (2kπ+,0),k∈z.

(3)若x∈[0,π],则 (x-)∈[-],cos(x-)∈[,1],故函数f(x)的值域为[-4,--1].

1
题型: 单选题
|
单选题

函数f(x)=sin(2x+)(x∈R)的最小正周期为(  )

A

Bπ

C

D

正确答案

B

解析

解:函数f(x)=sin(2x+)(x∈R)的最小正周期为T==π,

故选:B.

下一知识点 : 三角函数模型的简单应用
百度题库 > 高考 > 数学 > 函数y=Asin(ωX+φ)的图像

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题