热门试卷

X 查看更多试卷
1 简答题 · 16 分

如图,已知平面内一动点到两个定点的距离之和为,线段的长为

(1)求动点的轨迹的方程;

(2)过点作直线与轨迹交于两点,且点在线段的上方,

线段的垂直平分线为

①求的面积的最大值;

②轨迹上是否存在除外的两点关于直线对称,请说明理由。

1 简答题 · 14 分

已知直线经过椭圆的左顶点和上顶点,椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线,与直线分别交于两点。

(1)求椭圆的方程;

(2)(ⅰ) 设直线,的斜率分别为,求证为定值;

(ⅱ)求线段的长度的最小值。

1 简答题 · 13 分

设椭圆的左、右焦点分别为,离心率为,左焦点到直线的距离等于长半轴长。

(1)求椭圆的方程;

(2)过右焦点作斜率为的直线与椭圆交于两点,线段的中垂线与轴相交于点,求实数的取值范围。

1 简答题 · 14 分

抛物线的顶点在原点焦点在轴上,且经过点,圆过定点,且圆心在抛物线上,记圆轴的两个交点为

(1)求抛物线的方程;

(2)当圆心在抛物线上运动时,试问是否为一定值?请证明你的结论;

(3)当圆心在抛物线上运动时,记,求的最大值。

1 单选题 · 5 分

若抛物线的焦点与椭圆的右焦点重合,则的值为

A2

B-2

C4

D-4

下一知识点 : 圆锥曲线的定点、定值问题
百度题库 > 高考 > 文科数学 > 圆锥曲线中的范围、最值问题
  • 上一题
  • 1/5
  • 下一题