- 圆锥曲线中的范围、最值问题
- 共37题
1
简答题
· 13 分
已知圆锥曲线的两个焦点坐标是
,且离心率为
;
(1)求曲线的方程;
(2)设曲线表示曲线
的
轴左边部分,若直线
与曲线
相交于
两点,求
的取值范围;
(3)在条件(2)下,如果,且曲线
上存在点
,使
,求
的值。
1
简答题
· 13 分
已知直角坐标平面内一动点到点
的距离与直线
的距离相等。
(1)求动点的轨迹
的方程;
(2)过点(
)作斜率为
的直线与曲线
相交于
两点,若
为钝角,求实数
的取值范围;
(3)过点(
)作直线与曲线
相交于
两点,问:是否存在一条垂直于
轴的直线与以线段
为直径的圆始终相切?若存在,求出
的值;若不存在,请说明理由。
1
简答题
· 14 分
22. 已知椭圆C过点是椭圆的左焦点,P、Q是椭圆C上的两个动点,
且|PF|、|MF|、|QF|成等差数列。
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求证:线段PQ的垂直平分线经过一个定点A;
(Ⅲ)在(Ⅱ)条件下,点A关于原点O的对称点是B,求|PB|的最小值及相应点P的坐标。
1
简答题
· 14 分
20. 如图,已知抛物线:
和⊙
:
,过抛物线
上一点
作两条直线与⊙
相切于
、
两点,分别交抛物线为E、F两点,圆心点
到抛物线准线的距离为
.
(1)求抛物线的方程;
(2)当的角平分线垂直
轴时,求直线
的斜率;
(3)若直线在
轴上的截距为
,求
的最小值
1
简答题
· 13 分
21.在平面直角坐标系中,已知椭圆C:
的左焦点为
,且椭圆C的离心率
.
(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为,Q是椭圆C上异于
的任一点,直线
分别交x轴于点S,T,证明:
为定值,并求出该定值;
(3)在椭圆C上,是否存在点,使得直线
与圆
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.
下一知识点 : 圆锥曲线的定点、定值问题
扫码查看完整答案与解析