热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

9.设等差数列的前n项和为,且满足,对任意正整数n,都有,则k的值为(    )

A1006

B1007

C1008

D1009

正确答案

D

解析

,且

∴对任意正整数n,都有,则k=1009,∴所以选项D为正确选项

考查方向

本题主要考查了等差数列的前项和和数列函数性质,属于难题,是高考的热点

解题思路

,得出,得出结论

易错点

本题不易在利用前项和性质得出结论

知识点

等差数列的性质及应用数列与不等式的综合
1
题型:简答题
|
简答题 · 12 分

已知{}是等差数列,{}是各项都为正数的等比数列,且a1=2,b1=3,a3+b5=56,a5+b3=26.

17.求数列{},{}的通项公式;

18.若-+3x≤对任意n∈N﹡恒成立,求实数x的取值范围.

第(1)小题正确答案及相关解析

正确答案

(1)

解析

解:(Ⅰ)由题意,

代入得,消

是各项都为正数的等比数列,

所以

考查方向

本题主要考查了等差等比数列的通项公式和函数与数列综合的恒成立问题,考查考生的运算能力和转化能力。

解题思路

(1)通过等差等比数列的定义求出d和q,(2)先求出的最小值再解关于x的不等式。

易错点

寻找的最小值的方法

第(2)小题正确答案及相关解析

正确答案

(2)

解析

解:

(Ⅱ)记 

所以最小值为

所以,解得

所以.

考查方向

本题主要考查了等差等比数列的通项公式和函数与数列综合的恒成立问题,考查考生的运算能力和转化能力。

解题思路

(1)通过等差等比数列的定义求出d和q,(2)先求出的最小值再解关于x的不等式。

易错点

寻找的最小值的方法

1
题型:简答题
|
简答题 · 12 分

在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且

17.求

18.证明:

第(1)小题正确答案及相关解析

正确答案

见解析

解析

的公差为,因为所以解得(舍),.故

考查方向

等差数列的通项公式;数列求和;利用数列证明不等式

解题思路

第一问根据前N项和求通项公式,第二问用裂项相消的办法证明不等式

易错点

相关性质掌握不好;不会求数列的和

第(2)小题正确答案及相关解析

正确答案

见解析

解析

因为,所以.故

. 因为,所以,于是

所以.即

考查方向

等差数列的通项公式;数列求和;利用数列证明不等式

解题思路

第一问根据前N项和求通项公式,第二问用裂项相消的办法证明不等式

易错点

相关性质掌握不好;不会求数列的和

1
题型:简答题
|
简答题 · 12 分

设数列的前项和,且成等差数列.

16.求数列的通项公式;

17.记数列的前n项和,求得成立的n的最小值.

第(1)小题正确答案及相关解析

正确答案

解析

由已知,有

.

从而.

又因为成等差数列,即.

所以,解得.

所以,数列是首项为2,公比为2的等比数列.

.

考查方向

本题考查等差数列与等比数列的概念、等比数列通项公式与前n项和公式等基础知识,考查运算求解能力.

解题思路

利用及题设可得的关系为,所以这是一个公比为2的等比数列.再利用成等差数列,可求得,从而得通项公式.

易错点

不会根据Sn=2ana3求出an=2an-1(n≥2);

第(2)小题正确答案及相关解析

正确答案

10.

解析

由(1)得

所以

,得,即

因为

所以

于是,使成立的n的最小值为10.

考查方向

本题考查等差数列与等比数列的概念、等比数列通项公式与前n项和公式等基础知识,考查运算求解能力.

解题思路

由(1)得,这仍然是一个等比数列,利用等比数列的前n项和公式,可求得,代入,即可得使成立的n的最小值.

易错点

求前n项和时对于项数出错。

1
题型:简答题
|
简答题 · 15 分

已知数列的各项均不为零,其前项和为(N*),设,数列的前项和为

24.比较的大小();

25.证明:

第(1)小题正确答案及相关解析

正确答案

解析

得:

两式相减得:

,                          

,∴

               

即:;                        

考查方向

考查数列的通项与数列的前n项和,数列的缩放的方法与技巧

解题思路

先由通项及数列的前n项和的关系,求出通项,再求和,进而得出数列再对数列进行合理变形放缩,证出

易错点

在利用数列的前n项和与通项的关系时,易忽略对首项的验证

第(2)小题正确答案及相关解析

正确答案

解析

解:由(Ⅰ)知:

因此当时,

----------------------------------11分

又∵当时,

当且仅当时等号成立,

      ----------------

考查方向

考查数列的通项与数列的前n项和,数列的缩放的方法与技巧

解题思路

逐级对数列{}运用,进行放缩,得到,再求数列{}的前n项和,证得;利用不等式放缩得出,利用倒序累加,得,所以得证。

易错点

在构造数列放缩时,放缩不合理,导致出错

1
题型:简答题
|
简答题 · 12 分

若等差数列的前n项和为

17.求的值;

18.设数列的前n项和为,求证:.

第(1)小题正确答案及相关解析

正确答案

a=3;

解析

设等差数列的公差为,由可得

所以,令,可得

解得

考查方向

等差数的前n项和与通项关系

解题思路

将原式变形,得到,转化成n=2,n=3时,首项与公差的方程,求出首项直接代入,采用裂项求和的方法,求,然后放缩。

易错点

前n项和与通项的转化

第(2)小题正确答案及相关解析

正确答案

见解析

解析

由(1)

考查方向

构造新数列的方法及杂数列求和

解题思路

将原式变形,得到,转化成n=2,n=3时,首项与公差的方程,求出首项直接代入,采用裂项求和的方法,求,然后放缩。

易错点

裂项求和应用不熟练.

1
题型:简答题
|
简答题 · 12 分

(本小题满分12分,(1)小问4分,(2)小问8分)

在数列中,

27.若求数列的通项公式;

28.若证明:

第(1)小题正确答案及相关解析

正确答案

.

解析

试题分析:(1)由于,因此把已知等式具体化得,显然由于,则(否则会得出),从而,所以是等比数列,由其通项公式可得结论

试题解析:(1)由,有

若存在某个,使得,则由上述递推公式易得,重复上述过程可得,此与矛盾,所以对任意,.

从而,即是一个公比的等比数列.

.

考查方向

等比数列的通项公式,数列的递推公式,推理论证能力.

解题思路

数列的问题难度大,往往表现在与递推数列有关,递推含义趋广,不仅有数列前后项的递推,更有关联数列的递推,更甚的是数列间的“复制”式递推;从递推形式上看,既有常规的线性递推,还有分式、三角、分段、积(幂)等形式.在考查通性通法的同时,突出考查思维能力、代数推理能力、分析问题解决问题的能力.

易错点

本题第(1)小题通过递推式证明数列是等比数列,从而应用等比数列的通项公式求得通项.

第(2)小题正确答案及相关解析

正确答案

证明详见解析

解析

试题分析:(2)本小题是数列与不等式的综合性问题,数列的递推关系是可变形为,由于,因此,于是可得,即有,又,于是有

,这里应用了累加求和的思想方法,由这个结论可知,因此

,这样结论得证,本题不等式的证明应用了放缩法.

试题解析:(2)由,数列的递推关系式变为

变形为.

由上式及,归纳可得

因为,所以对

求和得

另一方面,由上已证的不等式知

综上:

考查方向

本题考查了不等式的证明,放缩法.,考查探究能力和推理论证能力,考查创新意识.

解题思路

数列的问题难度大,往往表现在与递推数列有关,递推含义趋广,不仅有数列前后项的递推,更有关联数列的递推,更甚的是数列间的“复制”式递推;从递推形式上看,既有常规的线性递推,还有分式、三角、分段、积(幂)等形式.在考查通性通法的同时,突出考查思维能力、代数推理能力、分析问题解决问题的能力.

易错点

第(2)小题把数列与不等式结合起来,利用数列的递推式证明数列是单调数列,利用放缩法证明不等式,难度很大.

1
题型:简答题
|
简答题 · 14 分

已知正项数列的前项和为,且 .

22.求的值及数列的通项公式;

23.是否存在非零整数,使不等式

对一切都成立?若存在,求出的值;若不存在,说明理由.

第(1)小题正确答案及相关解析

正确答案

.

解析

解:由.

时,,解得(舍去). ……2分

时,

,……………4分

,∴,则,……………5分

是首项为2,公差为2的等差数列,故.……………6分

另法:易得  猜想,再用数学归纳法证明(略).

考查方向

数列通项的求法;数列与不等式、三角函数综合应用.

解题思路

利用数列前 项和 与通项 的关系求解;注意第1项的讨论;

另法:易得  猜想,再用数学归纳法证明(略).

易错点

利用数列前 项和 与通项 的关系求通项的第1项的讨论;数列与不等式关系的综合讨论

第(2)小题正确答案及相关解析

正确答案

存在满足条件,理由:见解析.

解析

,得,……………7分

,则不等式等价于.……………8分

,……10分

,∴,数列单调递增.            ……………… 11分

假设存在这样的实数,使得不等式对一切都成立,则

① 当为奇数时,得; ……11分……………12分

② 当为偶数时,得,即. ……13分

综上,,由是非零整数,知存在满足条件.…… 14分

考查方向

数列通项的求法;数列与不等式、三角函数综合应用.

解题思路

先进行化简转化=cos(n+1)=,然后再分析法,将不等的另一侧构造一个新数列,证明{}是单调数列,再结合n进行讨论,利用函数的恒成立问题求解

易错点

利用数列前 项和 与通项 的关系求通项的第1项的讨论;数列与不等式关系的综合讨论

1
题型:简答题
|
简答题 · 20 分

已知数列满足:

24.若,求的值;

25.若,记,数列的前n项和为,求证:

第(1)小题正确答案及相关解析

正确答案

见解析

解析

(1)

时,解得

时,无解         所以,

考查方向

本题考查了递推关系、等比数列的通项公式及其前n项和公式、不等式的性质,考查了推理能力与计算能力,属于中档题

解题思路

由数列满足的解析式,代入可得

易错点

主要易错于递推关系找不出,

第(2)小题正确答案及相关解析

正确答案

见解析

解析

(2)方法1:   ①

    ②

①/②得,因为

方法2:因为

又因为,所以

所以,所以为单调递减数列

所以     

,    

所以:

考查方向

本题考查了递推关系、等比数列的通项公式及其前n项和公式、不等式的性质,考查了推理能力与计算能力,属于中档题

解题思路

这里可以从两个方面进行分析

①直接找出 的递推关系,进而得出通项公式,根据前n项和得出结论

②根据递推关系得出,且是递减数列,使用放缩法得出答案

易错点

主要易错于递推关系找不出,

1
题型:简答题
|
简答题 · 15 分

21.(本题满分15分)

已知数列满足==-(n

(1)证明:1(n);

(2)设数列的前n项和为,证明(n.

正确答案

(1)详见解析;(2)详见解析;

解析

试题分析:(1)首先根据递推公式可得,再由递推公式变形可知,从而得证;(2)由得,,从而可得,即可得证.

(1)由题意得,,即,由,由得,,即

(2)由题意得,∴①,由得,,∴,因此②,由①②得

考查方向

本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变

解题思路

(1)根据题意,首先求出,然后把进行变形得出结论;(2)通过累加法和累积的方法证得结论.

易错点

对数列的通项公式要灵活变形.

知识点

数列与不等式的综合
下一知识点 : 数列与向量的综合
百度题库 > 高考 > 理科数学 > 数列与不等式的综合

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题