- 几何证明选讲
- 共124题
6.如图,在圆O中,M,N是弦AB的三等分点,弦CD,CE分别经过点M,N,若CM=2,MD=4,CN=3,则线段NE的长为( )
正确答案
解析
根据相交弦定理可得 


考查方向
解题思路
平面几何中与圆有关的性质与定理是高考考查的热点,解题时要充分利用性质与定理求解,本部分内容中常见的命题点有:平行线分线段成比例定理;三角形的相似与性质;圆内接四边形的性质与判定;相交弦定理与切割线定理.
易错点
相交弦定理的灵活运用
知识点
22.如图所示,











(1)求证
(2)求
正确答案
(1)见解析;(2)
解析
试题分析:本题属于割线定理及角平分线的性质的问题,1)直接利用三角形相似对应边成比例在化为乘积式即可得到相应的证明;(2)利用角平分线的性质转化为已知线段的比值。
(1)证明:由已知可得



(2)由切割线定理可得PB=1,





考查方向
解题思路
本题考查割线定理及角平分线的性质的问题,解题步骤如下:(1)直接利用三角形相似对应边成比例在化为乘积式即可得到相应的证明;(2)利用角平分线的性质转化为已知线段的比值。
易错点
第2问不会转化要求的比值。
知识点
22.已知四边形ABCD内接于⊙O,AD:BC=1:2,BA、CD的延长线交于点E,且EF切⊙O于F.
(Ⅰ)求证:EB=2ED;
(Ⅱ)若AB=2,CD=5,求EF的长.
正确答案
(1)见解析;(2)EF=2
解析
试题分析:本题属于几何证明选讲中有关线段成比例的定理,
(1)利用三角形相似对应边成比例即可得证;
(2)切割线定理的使用。
考查方向
解题思路
本题考查几何证明选讲中有关线段成比例的定理,解题步骤如下:
(1)利用三角形相似对应边成比例即可得证;
(2)切割线定理的使用。
易错点
定理不熟。
知识点
22. 如图5,圆O的直径
割线PCD交圆O于点C,D,过点P作AP的垂线,交直线AC
于点E,交直线AD于点F.
(Ⅰ) 当

(Ⅱ) 求
正确答案
(1)
解析
:(Ⅰ) 连结BC,∵AB是圆O的直径 ∴则
又



∵
(Ⅱ):由(Ⅰ)知
∴D、C、E、F四点共圆,---------------------------------6分
∴
∵PC、PA都是圆O的割线,∴
∴
考查方向
解题思路



易错点
不会使用第(1)问的结论推导第(2)问;
知识点
22.如图(8),圆O1与圆O2相交于A、B两点,AB是圆O2的直径,过A点作圆O1的切线交圆O2于点E,并与BO1的延长线交于点P,PB分别与圆O1、圆O2交于C,D两点.
(Ⅰ)求证:PA·PD=PE·PC;
(Ⅱ)求证:AD=AE.
正确答案
(1)见解析;(2)见解析
解析
试题分析:本题属于几何证明选讲中的证明问题,
(1)由切割线定理直接证明;(2)直接按照步骤来求。



又

由①,②得
(2)连接AC,DE, 
由(1)知,
AB是⊙O2的直径,
考查方向
解题思路
本题考查几何证明选讲中的证明问题,解题步骤如下:
(1)由切割线定理直接证明;
(2)直接按照步骤来求。
易错点
图形看不懂,比较复杂。
知识点
已知











28.求
29.若

正确答案
(1)
解析
(1)∵







又

考查方向
解题思路
先根据弦切角定理得


易错点
没有发现
正确答案
(2)
解析
(2)∵,∴





考查方向
解题思路
先证明
易错点
看不出
22.如图,








(1)求证:
(2)若

正确答案
(1)见解析;(2)
解析
试题分析:本题属于几何证明选讲的基本问题,
(1)直接按照步骤来求;
(2)由切割线定理和三角形相似即可求出。
(1)
(2)已知
得:
又知
所以
考查方向
解题思路
本题考查几何证明选讲,解题步骤如下:
(1)直接按照步骤来求;
(2)由切割线定理和三角形相似即可求出。
易错点
切割线定理不会用。
知识点
选修4—1:几何证明选讲
如图,正方形ABCD边长为2,以A为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连结BF并延长交CD于点E.
27.求证:E为CD的中点;
28.求EF·FB的值.
正确答案
见解析
解析
解:(Ⅰ)由题可知



∴

依据切割线定理得
∵圆



同样依据切割线定理得
故
∴

考查方向
解题思路
本题解题思路
1)借助圆的切割定理得出

2)借助等面积求解FC,使用射影定理得到第二问
易错点
本题易错cd是两圆的切线,
正确答案
见解析
解析
解:
(Ⅱ)连结


∴
由
得
又在
考查方向
解题思路
本题解题思路
1)借助圆的切割定理得出

2)借助等面积求解FC,使用射影定理得到第二问
易错点
本题易错cd是两圆的切线,
正确答案
知识点
22.选修4-1:几何证明选讲
如图,












(Ⅰ)求证:

(Ⅱ)若

正确答案
见解析
解析
试题分析:本题属于平面几何中的基本问题,题目的难度是容易题。
(Ⅰ)连接

又




(Ⅱ)过




设

由


可得
考查方向
本题考查了平面几何的知识,主要涉及直线与圆的位置关系,三角形相似的考查.
解题思路
本题考查平面几何的知识,解题步骤如下:
(1)利用圆的相关定理证明。
(2)利用切割线定理和相交弦定理证明。
易错点
相关的定理容易混用。
知识点
扫码查看完整答案与解析





































