- 算法案例
- 共287题
下表是某小卖部6天卖出热茶的杯数与当天气温的对比表:
(1)将上表中的数据制成散点图.
(2)你能从散点图中发现温度与饮料杯数近似成什么关系吗?
(3)如果近似成线性关系的话,请求出回归直线方程来近似地表示这种线性关系.
(4)如果某天的气温是-5℃时,预测这天小卖部卖出热茶的杯数.
正确答案
(1)同解析,(2)近似成线性相关关系;(3)用=-1.6477x+57.557;(4)66。
(1)将表中的数据制成散点图如下图.
(2)从散点图中发现温度与饮料杯数近似成线性相关关系.
(3)利用计算机Excel软件求出回归直线方程(用来近似地表示这种线性关系),如下图.
用=-1.6477x+57.557来近似地表示这种线性关系.
(4)如果某天的气温是-5℃,用=-1.6477x+57.557预测这天小卖部卖出热茶的杯数约为
=-1.6477×(-5)+57.557≈66.
将二进制数101 101(2)化为八进制数,结果为__________.
正确答案
试题分析:将二进制数改为十进制数为,因为
,所以
把化为
进制的数.
正确答案
.
,
,
∴
.
所以,.
程序框图如图,将输出的的值依次记为
,数列{
}的通项公式为
=__________。
正确答案
试题分析:由循环结构得:数列{an}为首项是2,公比是3的等比数列,
则数列{an}的通项公式为an=2•3n-1.
故答案为
点评:解决该试题的关键是由已知的循环结构得到a1,a2,…,an为等比数列,找出首项和公比即可写出通项公式
280和2155的最大公约数是____.
正确答案
5
略
执行右边的程序框图,若输入时,那么输出的
;
正确答案
257
略
试求288和123的最大公约数.
正确答案
和
的最大公约数
,
,
,
.
∴和
的最大公约数
试写出寻找满足条件的最小正整数
的算法。
正确答案
步骤见答案
算法如下:
第一步:取值
;
第二步:取值
;
第三步:用的值代替
;
第四步:用的结果代替
;
第五步:如果,则输出
;否则执行第六步
第六步:回到第三步,重新执行第三步,第四步,第五步.
用辗转相除法求91和49的最大公约数.
正确答案
由 91=49×1+42,得42=91-49×1.
因为余数42≠0,所以由辗转相除法,得49=42×1+7,即 7=49-42×1;42=7×6,
即 0=42-7×6.所以,91和49的最大公约数等于7
略
从上海到美国旧金山的海底电缆有15个接点,现在某接点发生故障,需及时修理,为了尽快断定故障发生点,一般至少需要检查几个接点?
正确答案
解:算法如下:
S1 先从8号接点查起,用仪器向两端测试;
S2 若发现前半段正常,那么可断定故障在后半段;
S3 再由后半段的中点查起,即可断定故障发生点.
利用上述算法每查一次,就可以把待查的线路长度缩小一半,故至少需要检查三个接点.
采取逐步缩小范围的办法找故障,范围越小时越容易查找发生故障的接点.
扫码查看完整答案与解析