热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

已知圆C:x2+y2-2x+4y=0,则过原点O且与圆C相切的直线方程为______.

正确答案

圆C:x2+y2-2x+4y=0化为(x-1)2+(y+2)2=5,

所以圆的圆心坐标为(1,-2),半径为,原点在圆上,与圆心连线不平行坐标轴,

设切线方程为y=kx,所以=

解得k=,所以切线方程为:y=x.

故答案为:y=x.

1
题型:填空题
|
填空题

过点M(3,2)作⊙O:x2+y2+4x-2y+4=0的切线方程 ______.

正确答案

圆方程:(x+2)2+(y-1)2=1

所以圆心:(-2,1)

设切线为y=k(x-3)+2

圆心O到切线距离为

=1 

解之:k=0或k=

故切线为:y=2或12y=5x+9

故答案为:y=2或5x-12y+9=0

1
题型:填空题
|
填空题

以点(-1,2)为圆心且与直线y=x-1相切的圆的标准方程是______.

正确答案

∵点(-1,2)为圆心,且与直线y=x-1相切,

∴r==2

故所求的圆的方程为 (x+1)2+(y-2)2=8,

故答案为(x+1)2+(y-2)2=8.

1
题型:填空题
|
填空题

已知圆C:x2+y2-6x+8=0,若直线y=kx与圆C相切,且切点在第四象限,则k=______.

正确答案

∵圆C:x2+y2-6x+8=0的圆心为(3,0),半径r=1

∴当直线y=kx与圆C相切时,点C(3,0)到直线的距离等于1,

=1,解之得k=±

∵切点在第四象限,

∴当直线的斜率k=时,切点在第一象限,不符合题意

直线的斜率k=-时,切点在第四象限.因此,k=-

故答案为:-

1
题型:填空题
|
填空题

点P是直线2x+y+10=0上的动点,直线PA、PB分别切圆x2+y2=4于A、B两点,则四边形PAOB(O为坐标原点)的面积的最小值=______.

正确答案

由题意可得,PA=PB,PA⊥OA,PB⊥OB

SPAOB=2S△PAO=2×PA•AO=2PA

又∵在Rt△PAO中,由勾股定理可得,PA2=PO2-4,当PO最小时,PA最小,此时所求的面积也最小

点P是直线l:2x+y+10=0上的动点,

当PO⊥l时,PO有最小值d==2,PA=4

所求四边形PAOB的面积的最小值为8

故答案为:8

下一知识点 : 圆的弦长问题
百度题库 > 高考 > 数学 > 圆的切线方程

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题