- 平面的法向量
- 共243题
已知直三棱柱中,△
为等腰直角三角形,∠
=90°,且
=
,
、
、
分别为
、
、
的中点.
(1)求证:∥平面
;
(2)求证:⊥平面;
(3)求二面角的余弦值
正确答案
解:如图建立空间直角坐标系O—xyz,令AB=AA1=4,
则A(0,0,0),E(0,4,2),F(2,2,0),B(4,0,0),
B1(4,0,4),D(2,0,2), …………(2分)
(1)(
,4,0),面ABC的法向量为
(0,0,4),
∵,
平面ABC,
∴DE∥平面ABC. …………(4分)
(2)
…………(6分)
∴
∵ …………(8分)
(3) 平面AEF的法向量为,设平面 B1AE的法向量为
即
…………(10分)
令x=2,则
∴
∴二面角B1—AE—F的余弦值为
略
(本题满分14分)
ABCD为矩形,CF⊥平面ABCD,DE⊥平面ABCD,AB=4a,BC= CF=2a,DE=a, P为AB的中点.
(1)求证:平面PCF⊥平面PDE;
(2)求证:AE∥平面BCF.
正确答案
证明:(1)在矩形ABCD中,由AP=BP=BC=2a可得PC=PD=………………1分
又CD=4a,由勾股定理可得PD⊥PC……………………3分
因为CF⊥平面ABCD,则PD⊥CF……………………5分
由PCCF=C可得PD⊥平面PFC……………………6分
故平面PCF⊥平面PDE……………………7分
(2)作FC中点M,连接EM、BM
由CF⊥平面ABCD,DE⊥平面ABCD可得CM∥DE,又CM=DE=a,得四边形DEMC为平行四边形……………………9分
故ME∥CD∥AB,且ME=D=AB,所以四边形AEMB为平行四边形
故AE∥BM……………………12分
又AE平面BCF,BM
平面BCF,所以AE∥平面BC
F. ……………………14分
略
如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.
(1)求证AC⊥平面DEF;
(2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.
(3)求平面ABD与平面DEF所成锐二面角的余弦值。
正确答案
解(证明)(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.
∵△BCD是正三角形,且AB=BC=a,∴AD=AC=
.
设G为CD的中点,则CG=,AG=
.
∴,
,
.
三棱锥D-ABC的表面积为
.
(2)取AC的中点H,∵AB=BC,∴BH⊥AC.
∵AF=3FC,∴F为CH的中点.
∵E为BC的中点,∴EF∥BH.则EF⊥AC.
∵△BCD是正三角形,∴DE⊥BC.
∵AB⊥平面BCD,∴AB⊥DE.
∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.
∵DE∩EF=E,∴AC⊥平面DEF.
(3)存在这样的点N,
当CN=时,MN∥平面DEF.
连CM,设CM∩DE=O,连OF.
由条件知,O为△BCD的重心,CO=CM.
∴当CF=CN时,MN∥OF.∴CN=
.
略
已知正方体的棱长是
,则直线
与
间的距离为 。
正确答案
设
则,而另可设
,
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是________.
正确答案
以C为坐标原点,
CA,CB,CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,A1(1,0,2),B(0,1,0),A(1,0,0),C(0,0,0),则=(-1,1,-2),
=(-1,0,0),cos〈
,
〉=
=
=
.
扫码查看完整答案与解析