- 相似三角形的判定
- 共32题
如图,弦AB与CD相交于O内一点E,过E作BC的平行线与AD的延长线交于点P,已知PD=2DA=2,则PE=__________.
正确答案
解析
∠C与∠A在同一个O中,所对的弧都是,则∠C=∠A。又PE∥BC,∴∠C=∠PED。∴∠A=∠PED。又∠P=∠P,∴△PED∽△PAE,则,∴PE2=PA·PD。又PD=2DA=2,∴PA=PD+DA=3,∴PE2=3×2=6,∴PE=
知识点
如图,AD是⊙的切线,AC是⊙的弦,过C做AD的垂线,垂足为B,CB与⊙相交于点E,AE平分,且AE=2,则 , ,
.
正确答案
,,3
解析
略
知识点
如图,点A、B、C都在O上,过点C的切线 交AB的延长线于点D,若AB = 5, BC = 3,CD = 6,则线段AC的长为_______
正确答案
解析
略
知识点
选修41:几何证明选讲
如图14,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:
(1)BE=EC;
(2)AD·DE=2PB2.
正确答案
(1)连接AB,AC.由题设知PA=PD,
故∠PAD=∠PDA.
因为∠PDA=∠DAC+∠DCA,
∠PAD=∠BAD+∠PAB,
∠DCA=∠PAB,
所以∠DAC=∠BAD,从而BE=EC.
因此BE=EC.
(2)由切割线定理得PA2=PB·PC.
因为PA=PD=DC,所以DC=2PB,BD=PB.
由相交弦定理得AD·DE=BD·DC,
所以AD·DE=2PB2.
解析
(1)连接AB,AC.由题设知PA=PD,
故∠PAD=∠PDA.
因为∠PDA=∠DAC+∠DCA,
∠PAD=∠BAD+∠PAB,
∠DCA=∠PAB,
所以∠DAC=∠BAD,从而BE=EC.
因此BE=EC.
(2)由切割线定理得PA2=PB·PC.
因为PA=PD=DC,所以DC=2PB,BD=PB.
由相交弦定理得AD·DE=BD·DC,
所以AD·DE=2PB2.
知识点
如图,已知直线PD切⊙O于点D,直线PO交⊙O于点E,F.若,则⊙O的半径为();() .
正确答案
,15°
解析
略
知识点
扫码查看完整答案与解析