- 数列求和、数列的综合应用
- 共397题
等差数列{}中,
(I)求{}的通项公式;
(II)设=[
],求数列{
}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.
正确答案
(Ⅰ)设数列的公差为d。由题意有
,解得
,
所以的通项公式为
.
(Ⅱ)由(Ⅰ)知,
当n=1,2,3时,;
当n=4,5时,;
当n=6,7,8时,;
当n=9,10时,,
所以数列的前10项和为
.
知识点
某公司为激励创新,计划逐年加大研发奖金投入。若该公司2015年全年投入研发奖金130万元,在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) ( )
正确答案
知识点
19. 已知单调递增的等比数列满足
,且
是
的等差中项.
(I)求数列的通项公式;
(II)设,其前n项和为
,若
对于
恒成立,求实数m的取值范围.
正确答案
(1);
(2)
解析
试题分析:本题属于数列应用中的基本问题,题目的难度是逐渐由易到难,直接按照步骤来求
(Ⅰ)设等比数列的首项为
,公比为
由题意可知:,
∴
所以.得
(Ⅱ)令
相减得
若对于
恒成立,即
恒成立,即
令则可知其为减函数,故
考查方向
解题思路
本题考查数列的性质,解题步骤如下:
1、利用基本量法求出通项;
2、利用错位相减法求和,恒成立问题转为最值问题
易错点
第一问中的辅助角容易计算错误
知识点
17.(本小题满分12分) 已知数列中,
,其前
项的和为
,且满足
.
(I) 求证:数列是等差数列;
(II) 证明:当时,
.
正确答案
(1)见解析;(2)见解析。
解析
试题分析:本题属于等差数列以及等差数列的性质,数列的通项公式和前n项和的关系,(1)根据题意直接利用通项公式和前n项和的关系来证明;(2)利用放缩法来证明。
考查方向
解题思路
本题考查等差数列以及等差数列的性质,数列的通项公式和前n项和的关系,解题步骤如下:(1)根据题意直接利用通项公式和前n项和的关系来证明;(2)利用放缩法来证明。
易错点
找不到通项公式和前n项和的关系。
知识点
17.已知数列的前
项和
满足
,
.
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求证:
.
正确答案
(1);(2)略;
解析
(1)当时,
,即
,
;------------------1分
当时,由
,得
,两式相减,
得,即
,-------------------------------------------------4分
数列是
以
为首项,
为公比的等比数列,
;---------------------6分
(2)证明:∵,
-----------------------------------------8分
∴,
∴-------------------10分
.--------
--------------------------12
分
考查方向
解题思路
第(1)问利用求
得到
,进而判断出数列为等比数列即可得答案;第(2)问由第(1)问的结果可以得到
,进而利用列项相消求和即可证明。
易错点
不会转化题中的条件;不会用列项相消法求数列的前n项和。
知识点
7. 已知等比数列的前
项和为
,若
,则下列说法正确的是( )
正确答案
解析
由可知
,,根据等比数列的所有偶数项都为正,且是以
为公比的等比数列,所以选C.
考查方向
解题思路
由可知
,根据等比数列的所有偶数项都为正,所以可以算出正确答案。
易错点
公比的正负情况不知道。
知识点
23. 已知数列与
满足
.
(1)若且
,求
的通项公式;
(2)设的第
项是最大项,即
,求证:
的第
项是最大项;
(3)设,
,求
的取值范围,使得对任意
,
,且
正确答案
(1)
(2)见解析
(3)的取值范围
解析
(1)由,得
,
故是首项为1,公差为6的等差数列,
所以的通项公式是
(2)由,
得,所以
为常数列,
,即
,
因为
所以即
,
故的第
项是最大项.
(3)因为,所以
,
当时,
=
当时,
符合上式.所以
,
因为且对任意
,
故
,
特别地,于是
.
此时对任意,
.
当时,
,
,
由指数函数的单调性知,
的最大值为
,
最小值为.
由题意,的最大值及最小值分别为
及
.
由及
,
解得.
综上所述,的取值范围为
.
知识点
18. 已知数列的前
项和为
,点
在直线
上,数列
的前n项和为
,且
,
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设,数列
的前
项和为
,求证:
;
正确答案
(1),
;
;(2)见解析.
解析
试题分析:本题属于数列中的基本问题,题目的难度是逐渐由易到难.
解:(Ⅰ)由题意,得 ①
当时,
当时,
②
综上,
又
两式相减,得
数列为等比数列,
.
(Ⅱ)
是递增数列,
考查方向
解题思路
本题考查数列问题,解题步骤如下:
1、利用an与Sn的关系求解。
2、利用等比数列的求和公式求解。
易错点
等比数列分项时项数易错。
知识点
16.已知数列满足
,
,若
,则n的最大值为
正确答案
6
解析
,由
递推得
同理,
,
,
考查方向
解题思路
先写出递推关系,再带入进行检验
易错点
弄错递推公式。
知识点
15. 等差数列的首项
,其前
项和为
,且
.
(Ⅰ)求的通项公式;
(Ⅱ)求满足不等式的
的值.
正确答案
(Ⅰ)
(Ⅱ)
解析
(Ⅰ)设数列的公差为
.
因为,所以
.
因为,所以
,即
,
所以.
(Ⅱ)因为,
,所以
,
所以,所以
,
解得,所以
的值为
.
考查方向
本题考查了等差数列的通项公式、前n项和公式.在近几年的各省高考题出现的频率非常高.
解题思路
(Ⅰ)将通项公式代入,可求得公差d.
(Ⅱ)代入求和公式,解不等式即可.
易错点
移项时注意变号.
知识点
扫码查看完整答案与解析