热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 4 分

15.如图,在边长为的正方形中,为正方形边上的动点,

现将△所在平面沿折起,使点在平面上的射影

落在直线上.当从点运动到点,再从点运动到点

则点所形成轨迹的长度为  ▲  .

正确答案

解析

由题意,在平面AED内过点D作,H为垂足,由翻折的特征知,连接D'H.

当E从点D运动到C,再从C运动到B,故H点的轨迹是以AD'为直径的半圆弧,

根据边长为2的正方形ABCD知圆半径是1,

所以其所对的弧长为π,

故答案为:π

考查方向

本题考查与二面角有关的立体几何综合题目,解题的关键是由题意得出点H的轨迹是圆上的一段弧,翻折问题中要注意位置关系与长度等数量的变与不变.本题是一个中档题目

解题思路

根据图形的翻折过程中变与不变的量和位置关系知,在平面AED内过点D作 ,H为垂足,由翻折的特征知,连接D'H,则 ,当E从点D运动到C,再从C运动到B,故H点的轨迹是以AD'为直径的半圆弧,根据长方形的边长得到圆的半径,利用弧长公式求出轨迹长度.

易错点

主要易错于信息的转化失败,导致计算出错

知识点

定义法求轨迹方程直接法求轨迹方程
1
题型: 单选题
|
单选题 · 5 分

12.  正方体ABCD—A1B1C1D1的棱长为,在正方体表面上与点A距离是的点形成一

条封闭的曲线,这条曲线的长度是

A

B

C

D

正确答案

D

解析

正方体的各个面根据与球心位置关系分为两类:ABCD、AA1DD1、AA1BB1为过球心的截面,截痕为大圆弧,各弧圆心角为60度,所以根据弧长公式可以求得

考查方向

正方体的结构特征

解题思路

找到正方体的外接圆的圆心和半径,实际上是求球在正方体各个面上交线的长度计算。

易错点

空间想象能力和计算能力

知识点

棱柱的结构特征定义法求轨迹方程
下一知识点 : 相关点法求轨迹方程
百度题库 > 高考 > 文科数学 > 定义法求轨迹方程

扫码查看完整答案与解析

  • 上一题
  • 1/2
  • 下一题