- 相关点法求轨迹方程
- 共18题
已知动点P,Q都在曲线C:(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点。
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点。
正确答案
(1) (α为参数,0<α<2π); (2)略
解析
(1)依题意有P(2cos α,2sin α),Q(2cos 2α,2sin 2α),
因此M(cos α+cos 2α,sin α+sin 2α)。
M的轨迹的参数方程为(α为参数,0<α<2π)。
(2)M点到坐标原点的距离
d=(0<α<2π)。
当α=π时,d=0,故M的轨迹过坐标原点。
知识点
在平面直角坐标系中,若中心在坐标原点的双曲线过点,且它的一个顶点与抛物线的焦点重合,则该双曲线的方程为 .
正确答案
解析
(探究性理解水平/双曲线的标准方程和几何性质、抛物线的标准方程和几何性质)由题意知双曲线的焦点在轴上,则设双曲线的方程为,抛物线的焦点坐标为,双曲线的顶点与此焦点重合,所以,又因为双曲线过点,所以,得,所以双曲线方程为
知识点
已知椭圆:的一个焦点为,离心率为,设是椭圆长轴上的一个动点,过点且斜率为的直线交椭圆于,两点。
(1)求椭圆的方程;
(2)求的最大值。
正确答案
见解析
解析
(1)由已知,,,
∴ , -----------------3分
∴ 椭圆的方程为, -----------------4分
(2)设点(),则直线的方程为, -----------------2分
由 消去,得 -----------------4分
设,,则,
-----------------6分
∴
-----------------8分
∵, 即
∴当时,,的最大值为。 ----------10分
知识点
已知圆C的方程为,圆心C关于原点对称的点为A,P是圆上任一点,线段的垂直平分线交于点.
(1)当点P在圆上运动时,求点Q的轨迹方程;
(2)过点B(1,)能否作出直线,使与轨迹交于M、N两点,且点B是线段MN的中点,若这样的直线存在,请求出它的方程和M、N两点的坐标;若不存在,请说明理由.
正确答案
见解析。
解析
(1)
如图,由已知可得圆心,半径,点A(1,0)
∵点是线段的垂直平分线与CP的交点,∴
又∵,∴
∴点Q的轨迹是以O为中心,为焦点的椭圆,
∵,∴,
∴点Q的轨迹的方程.
(2)假设直线存在,设,分别代入得
,
两式相减得,即
由题意,得,
∴,即
∴直线的方程为
由得
∵点B在椭圆L内,
∴直线的方程为,它与轨迹L存在两个交点,
解方程得
当时,;当时,
所以,两交点坐标分别为和
知识点
在圆上任取一点,设点在轴上的正投影为点,当点在圆上运动时,动点满足,动点形成的轨迹为曲线。
(1)求曲线的方程;
(2)已知点,若是曲线上的两个动点,且满足,求的取值范围。
正确答案
见解析。
解析
(1)解法1:由知点为线段的中点。
设点的坐标是,则点的坐标是。
因为点在圆上,
所以。
所以曲线的方程为。
解法2:设点的坐标是,点的坐标是,
由得,,。
因为点在圆上,
所以。 ①
把,代入方程①,得。
所以曲线的方程为。
(2)解:因为,所以。
所以。
设点,则,即。
所以
。
因为点在曲线上,所以。
所以。
所以的取值范围为。
知识点
扫码查看完整答案与解析