- 圆的切线的判定定理的证明
- 共10题
22.如图,在直角中,,为边上异于的一点,以为直径作,分别交于点.
(Ⅰ)证明:四点共圆;
(Ⅱ)若为中点,且,求的长.
正确答案
(Ⅰ)略
(Ⅱ)
解析
试题分析:本题是有关直线与圆的问题,难度不大。在解题中注意结合切线的性质和勾股定理等知识进行解决。
(Ⅰ)连结,则,
因为为直径,所以,
因为,所以,
所以,
所以四点共圆.
(Ⅱ)由已知为的切线,所以,故,
所以,
因为为中点,所以.
因为四点共圆,所以,
所以.
考查方向
解题思路
本题主要考查圆的基本性质、圆周角定理等基础知识。
解题步骤如下:利用四点共圆的判定定理,证明四点共圆;利用切线性质和勾股定理及第一问的结论,求出的长。
易错点
第二问计算中,不易想到利用第一问四点共圆的性质解决。
知识点
22.选修4-1:几何证明选讲
如图,点在圆上,、的延长线交于点,交于点,.
(1)证明:弧弧;
(2)若,求的长.
正确答案
(1)见解析;(2).
解析
试题分析:本题属于圆的综合应用问题,属于简单题,只要掌握相关圆的知识,即可解决本题,解析如下:
(Ⅰ)证明:∵
∴
∵
∴
∵,
∴,又
∴
∴
∴.
(Ⅱ)由(Ⅰ)知,又
∴
∴
又∵,,
∴.
考查方向
解题思路
(1)利用圆的割线的性质及角的关系即可得证;
(2)利用三角形司相似即可求DF的长.
易错点
相关定理不熟悉导致本题失分。
知识点
22.选修4-1:几何证明选讲
如图,已知:是以为直径的半圆上一点,⊥于点,直线与过点的切线相交于点[来,为中点,连接交于点,
(Ⅰ)求证:∠BCF=∠CAB ;
(Ⅱ)若FB=FE=1,求⊙O的半径.
正确答案
(1)略
(2)
解析
(Ⅰ)证明:因为AB是直径,
所以∠ACB=90°
又因为F是BD中点,所以∠BCF=∠CBF=90°-∠CBA=∠CAB
因此∠BCF=∠CAB
(Ⅱ)解:直线CF交直线AB于点G,
由FC=FB=FE得:∠FCE=∠FEC
可证得:与全等,所以 FA=FG,
且AB=BG
由切割线定理得:(1+FG)2=BG×AG=2BG2 ……①
在Rt△BGF中,由勾股定理得:BG2=FG2-BF2 ……②
由①、②得:FG2-2FG-3=0
解之得:FG1=3,FG2=-1(舍去)
所以AB=BG=
所以⊙O半径为.
考查方向
解题思路
第一问:由已知条件得FC=FB=FE得到∠BCF=∠CBF=∠CAB
第二问:由FC=FB=FE得:∠FCE=∠FEC,继而证得:与全等,得到FA=FG,由切割线定理得:(1+FG)2=BG×AG=2BG2 再由勾再由股定理得:BG2=FG2-BF2,,然后求出FG
易错点
1、第一问想到弦切角定理,进而向证明CF与圆相切,虽然可以证明,但是,但是过程稍烦一些。 2、第二问没有注意题中的已知条件,而运用导致无法计算
知识点
如图所示,圆的直径,为圆周上一点,,过作圆的切线,则点到直线的距离___________.
正确答案
解析
略
知识点
如图所示,AC和AB分别是
圆O的切线,B、C为切点,且OC=3,AB=4,延长AO到D
点,则△ABD的面积是_______ ____.
正确答案
解析
略
知识点
扫码查看完整答案与解析