- 用向量方法解决线线、线面、面面的夹角问题
- 共2973题
已知二面角A-BC-D等于30°,△ABC是等边三角形,其外接圆半径为a,点D在平面ABC上射影是△ABC的中心O,求S△DBC.
正确答案
a
延长AO到E则AE⊥BC,又∵DO⊥面ABC,∴DE⊥BC ∠DEO=30° 又∵AO="a " ∴OE=a DE=
a BC=
a ∴S△BDC=
BC·DE=
·
a×
a =
a
如图,在三棱锥中,平面
平面
,
,
,
,
为
中点.(Ⅰ)求点B到平面
的距离;(Ⅱ)求二面角
的余弦值.
正确答案
(Ⅰ) (Ⅱ)
第一问中利用因为,
为
中点,所以
而平面平面
,所以
平面
,再由题设条件知道可以分别以
、
、
为
,
,
轴建立直角坐标系得
,
,
,
,
,
,
故平面的法向量
而
,故点B到平面
的距离
第二问中,由已知得平面的法向量
,平面
的法向量
故二面角的余弦值等于
解:(Ⅰ)因为,
为
中点,所以
而平面平面
,所以
平面
,
再由题设条件知道可以分别以、
、
为
,
,
轴建立直角坐标系,得
,
,
,
,
,
,故平面
的法向量
而,故点B到平面
的距离
(Ⅱ)由已知得平面的法向量
,平面
的法向量
故二面角的余弦值等于
如图所示,点A(0,0,a),在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD=90°,∠ADB=30°,E、F分别是AC、AD的中点.求D、C、E、F这四点的坐标.
正确答案
D(0,,0)...
由A(0,0,a)及∠ADB=30°,得点D(0,,0).
又BC=CD,∠BCD=90°,得.
由E、F分别是AC、AD的中点,得,.
在空间四边形中,
,
、
分别是
、
的中点,
,则异面直线
、
所成的角为 .
正确答案
略
(本小题共12分)
(普通高中做)
如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,
(I)求证:AC⊥BC1;
(II)求证:AC 1//平面CDB1;
(III)求异面直线 AC1与 B1C所成角的余弦值.
正确答案
解:(I)直三棱柱ABC-A1B1C1,底面三边长AC=3,BC=4AB=5,
∴ AC⊥BC,且BC1在平面ABC内的射影为BC,∴ AC⊥BC1………4分
(II)设CB1与C1B的交点为E,连结DE,∵ D是AB的中点,E是BC1的中点,∴ DE//AC1,
∵ DE平面CDB1,AC1平面CDB1,∴ AC1//平面CDB1;………8分
(III)∵ DE//AC1,∴∠CED为AC1与B1C所成的角,
在△CED中,ED=AC 1=
,CD=
AB=
,CE=
CB1=2
,
∴,
∴异面直线AC1与B1C所成角的余弦值.………12分
扫码查看完整答案与解析