- 用向量方法解决线线、线面、面面的夹角问题
- 共2973题
如图,在正三棱柱ABC-A1B1C1中已知AB=1,D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为α,则α=( )
正确答案
解析
解:如图作DE⊥面AA1C1C于E,连接AE,
∵正三棱柱ABC-A1B1C1中已知AB=1,D在棱BB1上,且BD=1,
∴AD=,DE
∴sinα==
α=arcsin
故选D.
已知二面角α-l-β的大小为50°,P为空间中任意一点,则过点P且与平面α,β所成的角都是25°的直线的条数为( )
正确答案
解析
解:首先给出下面两个结论
①两条平行线与同一个平面所成的角相等.
②与二面角的两个面成等角的直线在二面角的平分面上.
图1.
(1)如图1,过二面角α-l-β内任一点作棱l的垂面AOB,交棱于点O,与两半平面于OA,OB,则∠AOB为二面角α-l-β的平面角,∠AOB=50°
设OP1为∠AOB的平分线,则∠P1OA=∠P1OB=25°,与平面α,β所成的角都是25°,此时过P且与OP1平行的直线符合要求,有一条.当OP1以O为轴心,在二面角α-l-β的平分面上转动时,OP1与两平面夹角变小,不再会出现25°情形.
图2.
(2)如图2,设OP2为∠AOB的补角∠AOB′的角平分线,则∠P2OA=∠P2OB=65°,与平面α,β所成的角都是65°.当OP2以O为轴心,在二面角α-l-β′的平分面上转动时,OP2与两平面夹角变小,对称地在图中OP2两侧会出现25°情形,有两条.此时过P且与OP2平行的直线符合要求,有两条.
综上所述,直线的条数共有三条.
故选B.
(2013秋•龙海市校级期末)如图,P是平面ABCD外一点,四 边形ABCD是矩形,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点,(1)求证平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.
正确答案
证明:(1)∵四边形ABCD是矩形
∴CD⊥AD
∵PA⊥平面ABCD
∴CD⊥PA
∵AD与PA是相交直线
∴CD⊥面PAD
∵CD⊂面PAD
∴面PDC⊥面PAD
(2)设H为AD的中点,连EH,则EH∥PA,由PA⊥平面ABCD知EH⊥面ACD
过H作HO⊥AC于O,连EO则EO⊥AC∴∠EOH即为所求
在Rt△EHO中 而后OH=∴OE=
∴∴
解析
证明:(1)∵四边形ABCD是矩形
∴CD⊥AD
∵PA⊥平面ABCD
∴CD⊥PA
∵AD与PA是相交直线
∴CD⊥面PAD
∵CD⊂面PAD
∴面PDC⊥面PAD
(2)设H为AD的中点,连EH,则EH∥PA,由PA⊥平面ABCD知EH⊥面ACD
过H作HO⊥AC于O,连EO则EO⊥AC∴∠EOH即为所求
在Rt△EHO中 而后OH=∴OE=
∴∴
把边长为6的正三角形ABC沿高AD折成60°的二面角,则点A到BC的距离是( )
正确答案
解析
解:如图,由题意知∠BDC即为二面角的平面角,大小为60°,由边长为6的正三角形ABC,D是中点,故△BDC为正三角形,
由题意知,AD⊥底面BDC,过D作DE垂直于BC于E,由上证明知,E是BC的中点,连接AE,
由AD⊥底面BDC,知AD⊥BC,由作图知DE⊥BC,又AD∩DE=D
故BC⊥面ADE,故BC⊥AE,即AE即为点A到BC的距离
由题意边长为6的正三角形ABC,故AD=,
在正三角形BDC中,边长为3,所以BC边上的高DE=
在直角三角形ADE中,可得AE==
故选D
如图,棱长为1的正四面体ABCD中,E、F分别是棱AD、CD的中点,O是点A在平面BCD内的射影.
(Ⅰ)求直线EF与直线BC所成角的大小;
(Ⅱ)求点O到平面ACD的距离;
(Ⅲ)求二面角E-BE-F的大小.
正确答案
解:(Ⅰ)因为E、F分别是棱AD、CD的中点,
所以EF∥AC.
所以∠BCA是EF与BC所成角.
∵正四面体ABCD,∴△ABC为正三角形,
所以∠BCA=60°.
即EF与BC所成角的大小是60°.
(II)如图,连接AO,AF,
因为F是CD的中点,
且△ACD,△BCD均为正三角形,
所以BF⊥CD,AF⊥CD.
因为BF∩AF=F,
所以CD⊥面AFB.
因为CD⊂在ACD,
所以面AFB⊥面ACD.
因为ABCD是正四面体,且O是点A在面BCD内的射影,
所以点O必在正三角形BCD的中线BF上,
在面ABF中,过O做OG⊥AF,垂足为G,
所以OG⊥在ACD.
即OG的长为点O到面ACD的距离.
因为正四面体ABCD的棱长为1,
在△ABF中,容易求出AF=BF=,OF=
,AO=
,
因为利用相似比易求出OG=.
所以点O到平面ACD的距离是.
(Ⅲ)连接OD,设OD的中点为K,连EK,
则EK∥AO.
因为AO⊥面BCD,
所以EK⊥面BCD.
在平在BCD内,过点K作KN∥CD,KN交BF
于M,交BC于N,
因为BF⊥CD,
所以KN⊥BF.
连接EM,
所以EM⊥BF.
所以∠NME是所求二面角的平面角.
因为EK=CH=
,
MK=ED=
AD=
,
所以.
所以.
所以所求二面角的大小为.
解析
解:(Ⅰ)因为E、F分别是棱AD、CD的中点,
所以EF∥AC.
所以∠BCA是EF与BC所成角.
∵正四面体ABCD,∴△ABC为正三角形,
所以∠BCA=60°.
即EF与BC所成角的大小是60°.
(II)如图,连接AO,AF,
因为F是CD的中点,
且△ACD,△BCD均为正三角形,
所以BF⊥CD,AF⊥CD.
因为BF∩AF=F,
所以CD⊥面AFB.
因为CD⊂在ACD,
所以面AFB⊥面ACD.
因为ABCD是正四面体,且O是点A在面BCD内的射影,
所以点O必在正三角形BCD的中线BF上,
在面ABF中,过O做OG⊥AF,垂足为G,
所以OG⊥在ACD.
即OG的长为点O到面ACD的距离.
因为正四面体ABCD的棱长为1,
在△ABF中,容易求出AF=BF=,OF=
,AO=
,
因为利用相似比易求出OG=.
所以点O到平面ACD的距离是.
(Ⅲ)连接OD,设OD的中点为K,连EK,
则EK∥AO.
因为AO⊥面BCD,
所以EK⊥面BCD.
在平在BCD内,过点K作KN∥CD,KN交BF
于M,交BC于N,
因为BF⊥CD,
所以KN⊥BF.
连接EM,
所以EM⊥BF.
所以∠NME是所求二面角的平面角.
因为EK=CH=
,
MK=ED=
AD=
,
所以.
所以.
所以所求二面角的大小为.
扫码查看完整答案与解析