- 用向量方法解决线线、线面、面面的夹角问题
- 共2973题
如图,四棱锥P-ABCD,侧面PAD⊥底面ABCD,ABCD是直角梯形,△PAD为正三角形,DA⊥AB,CB⊥AB,AB=AD=1,BC=2,E为BC的中点,M为侧棱PB上一点.
(Ⅰ)求直线PC与平面PAD所成的角;
(Ⅱ)是否存在点M使直线BD⊥平面MAE?若存在,求出的值;若不存在,请说明理由.
正确答案
解:(Ⅰ)过点C作CF⊥AD于F,连接PF,
∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,
∴CF⊥侧面PAD,
于是∠CPF是直线PC与平面PAD所成的角.
由条件得,CF=1,
在三角形PDF中,∵PD=DF=1,∠PDF=120°,
∴PF=,
在直角△PFC中,tan∠CPF==
,
∴∠CPF=30°,
即直线PC与平面PAD所成的角为30°.
(Ⅱ)假设存在点M使直线BD⊥平面MAE.
要使BD⊥平面MAE,∵ABED为正方形,∴AE⊥BD,∴只需BD⊥OM,
在△PBD中,PD=1,PB=BD=,
cos∠PBD==
,
∴BM==
=
,PM=PB-BM=
,
故存在点M使直线BD⊥平面MAE,且.
解析
解:(Ⅰ)过点C作CF⊥AD于F,连接PF,
∵侧面PAD⊥底面ABCD,侧面PAD∩底面ABCD=AD,
∴CF⊥侧面PAD,
于是∠CPF是直线PC与平面PAD所成的角.
由条件得,CF=1,
在三角形PDF中,∵PD=DF=1,∠PDF=120°,
∴PF=,
在直角△PFC中,tan∠CPF==
,
∴∠CPF=30°,
即直线PC与平面PAD所成的角为30°.
(Ⅱ)假设存在点M使直线BD⊥平面MAE.
要使BD⊥平面MAE,∵ABED为正方形,∴AE⊥BD,∴只需BD⊥OM,
在△PBD中,PD=1,PB=BD=,
cos∠PBD==
,
∴BM==
=
,PM=PB-BM=
,
故存在点M使直线BD⊥平面MAE,且.
如图,已知等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为
,M是AC的中点,则EM,DE所成角的余弦值等于______.
正确答案
解析
解:连结CD、CE,取AB的中点H,
设点C在平面ABDE内的射影为O,连结CO、OH、CH
∵CH是等边三角形ABC的中线,∴CH⊥AB
∵CO⊥平面ABDE,得OH是CH在平面ABDE内的射影
∴OH⊥AB,得∠OHC就是二面角C-AB-D的平面角
设AB=2,则等边△ABC中,CH=AB=
Rt△COH中,cos∠OHC==
,可得OH=
CH=1,
由此可得点O是正方开ABDE的中心,可得四棱锥C-ABDE是所有棱长均为2的正四棱锥
等边△ACE中,=
(
)且|
|=
∴•
=
•(
)=
•
+
•
∵∠DEA=90°,得•
=0;∠DEC=60°,得
•
=|
|•|
|cos60°=2
∴•
=
×0+
×2=1
可得cos<,
>=
=
=
由此结合两条直线所成角的定义,可得直线EM、DE所成角的余弦值等于.
如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是BC1的中点,则直线DE与平面ABCD所成角的正切值为______.
正确答案
解析
解:过E作EF⊥BC,交BC于F,连接DF.
∵EF⊥BC,CC1⊥BC
∴EF∥CC1,而CC1⊥平面ABCD
∴EF⊥平面ABCD,
∴∠EDF是直线DE与平面ABCD所成的角(4分)
由题意,得EF=.
∵(8分)
∵EF⊥DF,∴.(10分)
故答案为.
如图,在平行四边形ABCD中,AB=2AD,∠BAD=60°,E为AB的中点,将△ADE沿直线DE折起到△PDE的位置,使平面PDE⊥平面BCDE.
(Ⅰ)证明:平面PCE⊥平面PDE;
(Ⅱ)设F、M分别为PC、DE的中点,求直线MF与平面PDE所成的角.
正确答案
(Ⅰ)证明:∵AB=2AD,E为AB的中点,
∴AE=AD,
∴∠BAD=60°,
∴△ADE为正三角形,
∴∠AED=60°,
∵BE=BC,∠CBE=120°,
∴∠CEB=30°,
∴CE⊥DE,
∵平面PDE⊥平面BCDE,平面PDE∩平面BCDE=DE,
∴CE⊥平面PDE,
∴平面PCE⊥平面PDE;
(Ⅱ)解:取PE中点G,连接FG,则
∵F为PC的中点,
∴FG∥CE,
∴FG⊥平面PDE,
连接MG,则∠FMG为直线MF与平面PDE所成的角.
设AD=2,则GM=PD=1,
在△BCE中,BE=BC=2,∠CBE=120°,则
CE2=4+4-2•2•2cos120°=12,∴CE=2,
∴FG=.
在直角△FGM中,tan∠FMG==
,
∴∠FMG=60°,
∴直线MF与平面PDE所成的角为60°.
解析
(Ⅰ)证明:∵AB=2AD,E为AB的中点,
∴AE=AD,
∴∠BAD=60°,
∴△ADE为正三角形,
∴∠AED=60°,
∵BE=BC,∠CBE=120°,
∴∠CEB=30°,
∴CE⊥DE,
∵平面PDE⊥平面BCDE,平面PDE∩平面BCDE=DE,
∴CE⊥平面PDE,
∴平面PCE⊥平面PDE;
(Ⅱ)解:取PE中点G,连接FG,则
∵F为PC的中点,
∴FG∥CE,
∴FG⊥平面PDE,
连接MG,则∠FMG为直线MF与平面PDE所成的角.
设AD=2,则GM=PD=1,
在△BCE中,BE=BC=2,∠CBE=120°,则
CE2=4+4-2•2•2cos120°=12,∴CE=2,
∴FG=.
在直角△FGM中,tan∠FMG==
,
∴∠FMG=60°,
∴直线MF与平面PDE所成的角为60°.
如图,正四面体ABCD的外接球球心为O,E是BC的中点,则直线OE与平面BCD所成角的正切值为______.
正确答案
解析
解:设正四面体ABCD的棱长为a,连接AE,DE,
∵四面体ABCD为正四面体,E为BC的中点,
∴AE=DE=a,O点在平面ADE上,且OE等分∠AED
过O作OH垂直平面BCD,交平面BCD与H点,则H落在DE 上,
∴∠OED为直线OE与平面BCD所成角,∠OED=∠AED
在△AED中,cos∠AED==
=,
∴cos2∠OED=cos∠AED=
=
,sin2∠OED=
∴tan2∠OED=,tan∠OED=
故答案为
扫码查看完整答案与解析