- 直线与圆的位置关系
- 共1189题
给出下列命题:
①当a≥1时,不等式|x-4|+|x-3|<a的解集非空
②存在一圆与直线系xcosθ+ysinθ=1(x∈R)都相切
③已知(x+2)2+=1,则x2+y2的取值范围是[1,
]
④底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥.
⑤函数y=f(x+2)和y=f(2-x)的图象关于直线x=2对称.
其中正确的有______.
正确答案
①|x-4|+|x-3|的几何意义是到3的距离与到4的距离和,最小值为为1,若a=1时,不等式|x-4|+|x-3|<1的解集为空,①错误;
②x2+y2=1与直线系xcosθ+ysinθ=1都相切,②正确;
③设x=-2+cosα,y=2sinα.则x2+y2=4+cos2α-4cosα+4sin2α=-3cos2α-4cosα+8(cosα∈(-1,1)),当cosα=1时,取最大值最小值,为1;当cos=-时,取最大值.为
,.正确.
④正三棱锥的每个面都是正三角形,④错误;
⑤函数y=f(x+2)和y=f(2-x)的图象关于直线x=2对称.正确
故答案为:②③⑤.
已知圆C的方程为x2+y2=r2,定点M(x0,y0),直线l:x0x+y0y=r2有如下两组论断:
第Ⅰ组第Ⅱ组
(a)点M在圆C内且M不为圆心(1)直线l与圆C相切
(b)点M在圆C上(2)直线l与圆C相交
(c )点M在圆C外(3)直线l与圆C相离
由第Ⅰ组论断作为条件,第Ⅱ组论断作为结论,写出所有可能成立的命题 ______.(将命题用序号写成形如p⇒q的形式)
正确答案
9中可能有:(a)⇒(1),(a)⇒(1),(a)⇒(3),(b)⇒(1),(b)⇒(2),(b)⇒(3),(c)⇒(1),(c)⇒(2),(c)⇒(3).所以可能是真命题的是:(a)⇒(2),(b)⇒(1),(c)⇒(3)
说明:(a)⇒(2),点M在圆C内且M不为圆心⇒直线l与圆C相交,因为直线经过M(x0,y0)而M在圆内,所以直线与圆相交,假如不相交,则就相切或外离得到矛盾,所以直线l与圆相交.
(b)⇒(1),点M在圆C上⇒直线l与圆C相切,点M在圆上可能直线与圆只有一个公共点,所以直线l与圆相切.
(c)⇒(3),点M在圆C外⇒直线l与圆C相离,点M在圆外,可能直线l与圆相离.
“a=1且b=1”是“直线x+y=0与圆(x-a)2+(y-b)2=2相切”的______条件(填充分不必要,必要不充分,充要,既不充分也不必要).
正确答案
当“a=1且b=1”成立时“直线x+y=0与圆(x-a)2+(y-b)2=2相切”成立
即“a=1且b=1”是“直线x+y=0与圆(x-a)2+(y-b)2=2相切”的充分条件
而当“直线x+y=0与圆(x-a)2+(y-b)2=2相切”时,a=1且b=1”或a=-1且b=-1”,
即“a=1且b=1”是“直线x+y=0与圆(x-a)2+(y-b)2=2相切”的不必要条件
故“a=1且b=1”是“直线x+y=0与圆(x-a)2+(y-b)2=2相切”的充分不必要条件
故答案为:充分不必要.
半径为R与r的⊙A与⊙B都经过同一个点D(4,5)且与两坐标轴都相切,则R与r的关系是______.
正确答案
由已知中⊙A与⊙B都经过同一个点D(4,5)且与两坐标轴都相切,
故⊙A的方程可设为:(x-R)2+(y-R)2=R2,
⊙B的方程可设为:(x-r)2+(y-r)2=r2,
将D(4,5)分别代入以上两个圆的方程得:
R2-18R+41=0,r2-18r+41=0,
说明R与r是方程x2-18x+41=0的两个根.
解得:x=9±2.
若两圆重合,则R=r;
若两圆半径不等,则R+r=9+2+9-2
=18.
所以R与r的关系是R=r或R+r=18.
故答案为R=r或R+r=18.
已知与曲线C:x2+y2-2x-2y+1=0相切的直线l分别交x、y轴于A、B两点,O为原点,|OA|=a,|OB|=b(a>2,b>2).
(1)求证:若曲线C与直线l相切,则有(a-2)(b-2)=2;
(2)求线段AB中点的轨迹方程;
(3)求△AOB面积的最小值.
正确答案
(1)由题意知A(a,0),B(0,b),∴直线l方程为+
=1,即bx+ay-ab=0
曲线C表示一个圆,圆心C(1,1),半径r=1…(2分)∵直线与圆相切,∴=1,…(4分)
两边平方整理得ab+2-2a-2b=0,即(a-2)(b-2)=2…(5分)
(2)设线段AB中点为M(x,y),由中点坐标公式得x=>1,y=
>1,即…(7分)a=2x,b=2y,代入(a-2)(b-2)=2得(2x-2)(2y-2)=2…(8分)
整理得AB中点M的轨迹方程为(x-1)(y-1)=(x>1,y>1)…(9分)
(3)S△AOB=ab=
[-2+2(a+b)]=-1+a+b=(a-2)+(b-2)+3≥3+2
=3+2
…(11分)(当且仅当a-2=b-2,又(a-2)(b-2)=2,即a=b=2+
时取得等号)…(12分)
故△AOB面积的最小值为3+2…(13分)
扫码查看完整答案与解析