- 直线与圆的位置关系
- 共1189题
已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0.
(1)求△ABC的顶点B,C的坐标;
(2)若圆M经过A,B且与直线x-y+3=0相切于点P(-3,0),求圆M的方程.
正确答案
(1)∵AC边上的高BH所在直线的方程为y=0,即为x轴,
∴直线AC的方程为y轴,即为直线x=0,又直线CD:2x-2y-1=0,
联立得:,解得:
,
∴C(0,-),
设B(b,0),又A(0,1),
∴AB的中点D(,
),
把D坐标代入方程2x-2y-1=0得:b-1-1=0,解得:b=2,
∴B(2,0);(4分)
(2)由A(0,1),B(2,0)可得:
线段AB中点坐标为(1,),kAB=
=-
,
∴弦AB垂直平分线的斜率为2,
则圆M的弦AB的中垂线方程为y-=2(x-1),即4x-2y-3=0,①
又圆M与x-y+3=0相切,切点为(-3,0),且x-y+3=0的斜率为1,
∴圆心所在直线方程的斜率为-1,
则圆心所在直线为y-0=-(x+3),即y+x+3=0,②
联立①②,解得:,
∴M(-,-
),(8分)
∴半径|MA|==
,
所以所求圆方程为(x+)2+(y+
)2=
,即x2+y2+x+5y-6=0. (12分)
过点M(1,2)的直线l与圆C:x2+y2-6x-8y=0交与A,B两点,C圆心当∠ACB最小时,直线l方程为______.
正确答案
将圆的方程化为标准方程为(x-3)2+(y-4)2=25,
∴圆心坐标C为(3,4),
∵M(1,2),
∴kCM==1,
∴kAB=-1,
则此时直线l的方程为y-2=-(x-1),即x+y-3=0.
故答案为:x+y-3=0
已知圆C:x2+y2-2x-4y-20=0,直线l:(2m+1)x+(m+1)y-7m-4=0,m∈R.
(I)直线l是否过定点,有则求出来?判断直线与圆的位置关系及理由?
(II)求直线被圆C截得的弦长L的取值范围及L最短时弦所在直线的方程.
正确答案
(I)直线l:(2m+1)x+(m+1)y-7m-4=0 即 (x+y-4)+m(2x+y-7)=0,由 求得
,故直线过定点A(3,1).
再由圆C:x2+y2-2x-4y-20=0,即 (x-1)2+(y-2)2=25,表示以C(1,2)为圆心,以5为半径的圆,而|AC|=,小于半径,
故点A在圆内,故直线和圆相交.
(II)当直线l过圆心时,弦长L最大为直径10,当CA和直线l垂直时,弦长L最小,为2=4
,
故直线被圆C截得的弦长L的取值范围为[4,10].
当弦长L最小时,AC的斜率KAC==-
,故直线l的斜率为2,故直线l的方程为 y-1=2(x-3),即 2x-y-5=0.
(1)已知直线l1:mx+2y+1=0与直线l2:2x-4m2y-3=0垂直,求直线l1的方程;
(2)若直线l1:mx+2y+1=0被圆O:x2+y2-2x+2y-2=0所截得的线段长为2,求直线l1的方程.
正确答案
(1)由两直线垂直的条件可知,m×1-m2=0
∴m=0或m=1,
直线l1的方程为2y+1=0或x+2y+1=0.
(2)由题意可知圆O:x2+y2-2x+2y-2=0为(x-1)2+(y+1)2=4,圆的半径为2,圆心坐标(1,-1),
所以圆心到直线的距离为:1,
所以1=,解得m=-
.
直线l1的方程为:-x+2y+1=0,即3x-4y-2=0.
直线y=1-x绕着点(1,0)顺时针旋转90°,再将直线向上平移1个单位,这时恰好与圆x2+(y-1)2=m相切,则m等于______.
正确答案
直线y=1-x绕着点(1,0)顺时针旋转90°,再将直线向上平移1个单位,得到直线方程为y=x-1+1,即x-y=0.
恰好与圆x2+(y-1)2=m相切,所以=
,m=
.
故答案为:.
扫码查看完整答案与解析