- 变量间的相关关系
- 共519题
下面的茎叶图是某赛季甲乙两名篮球运动员比赛得分的
情况:
根据茎叶图分析 发挥更稳定
正确答案
乙
略
已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是________________.
正确答案
Y=1.23x+0.08
试题分析:依题意,b=1.23,,
,则
,所以回归直线的方程是Y=1.23x+0.08
点评:回归直线的方程为,其中b是回归直线的斜率,
是样本点的中心。我们还要知道,回归直线过点
。
某设备的使用年限x和所支出的维修费用y(万元),有如下的统计数据:
数据显示y对x呈线性相关关系,根据提供的数据,用最小二乘法求出y关于x的线性回归方程为 。
(参考数据:)
正确答案
略
“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是.
(Ⅰ)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路 ”与性别是否有关?(
当<2.706时,没有充分的证据判定变量性别有关,当
>2.706时,有90%的把握判定变量性别有关,当
>3.841时,有95%的把握判定变量性别有关,当
>6.635时,有99%的把握判定变量性别有关)
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.
正确答案
(Ⅰ) 没有充足的理由认为反感“中国式过马路”与性别有关
(Ⅱ)
的数学期望为:
试题分析:(Ⅰ)
由已知数据得:,
所以,没有充足的理由认为反感“中国式过马路”与性别有关.
(Ⅱ)的可能取值为
所以的分布列为:
的数学期望为:
点评:求分布列的步骤:找到随机变量可以取得值,求出各值对应的概率,汇总成分布列;独立性检验的求解步骤:写出分类变量的列联表,求出观测值,比较数据得到结论
已知x,y的取值如下表所示:
从散点图可以看出x与y线性相关.
(1)求出线性回归方程.
(2)请估计x=10时y的值.
参考数据与公式:
正确答案
(1)=1.23x+0.08 (2)
=12.38.
(1)由公式,
,求出回归直线方程.
(2)把x=10代入(1)中所求回归直线方程可求出y值
(1) …………2分
于是 ……………………4分
=5-1.23×4=0.08 回归直线方程为
=1.23x+0.08 ……8分
(2)当x=10时,=1.23×10+0.08=12.3+0.08=12.38.
(本小题满分10分)
从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭7次,命中的环数如下:
甲
10
8
6
9
7
6
10
乙
10
9
8
6
7
8
8
(1)计算甲、乙两人射箭命中环数的平均数和方差;
(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
正确答案
="8" ,
="8" ;
,
. 从成绩的稳定性考虑,选择乙参赛更合适
解:(1)计算得:="8" ,
="8"
,
. ………5分学
(2)由(1)可知,甲、乙两名学生射箭命中环数的平均数相等,
但>
,这表明乙的成绩比甲更稳定一些.
从成绩的稳定性考虑,选择乙参赛更合适.…………10分学
下列说法:
①从匀速传递的产品生产流水线上,质检员第10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样
②某地气象局预报:5月9日本地降水概率为90%,结果这天没下雨,这表明天气预报并不科学
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好
④在回归直线方程中,当解释变量x每增加一个单位时,预报变量平均增加0.1个单位
其中正确的是 (填上你认为正确的序号)
正确答案
③④
试题分析:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样不是分层抽样,故①不正确,
②5月9日本地降水概率为90%,只表明下雨的可能性是90%,故②不正确
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好,故③正确,
④在回归直线方程中,当解释变量x每增加一个单位时,预报变量
平均增加0.1个单位,故④正确,
故答案为:③④
点评:本题考查独立性检验,考查分层抽样方法,考查线性回归方程,考查判断两个相关变量之间的关系,是一个综合题目,这种题考查的知识点比较多,需要认真分析.
高三某学生高考成绩(分)与高三期间有效复习时间
(天)正相关,且回归方程是
,若期望他高考达到560分,那么他的有效复习时间应不低于______天.
正确答案
170
令y=560,所以.
下面是对智商在40~69之间的人的出生季节所作的一项调查。结果如下(单位:人):
(Ⅰ) 请求出表中X和Y的值;
(Ⅱ) 问智商在40~69之间的人的智商与出生季节是否有关联?
正确答案
解: (Ⅰ) X="40" ,Y=100
(Ⅱ) 95%把握说智商在40~69之间的人的智商与出生季节有关.
本试题主要是考查了独立性检验的思想的运用。利用表格中的数据表示出x=70-30==40,y=50+50=100的值,然后结合公式,以及a,,b,c,d的值,利用列联表中的数据,求解得到观察值,然后确定把握程度。
解: (Ⅰ) X="40" ,Y=100
(Ⅱ) =
有95%把握说智商在40~69之间的人的智商与出生季节有关.
口袋中有n(n∈N*)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X,若P(X=2)=求:
(1)n的值;
(2)X的概率分布与数学期望.
正确答案
(1);(2)X的数学期望是
试题分析:(1)由题知
,得
;(2)由题知,X的可能取值为1,2,3,4,分别计算其概率,然后列分布列计算期望.
试题解析:(1)由题知
5分
(2)由题知,X的可能取值为1,2,3,4,所以
所以,X的概率分布表为
所以
答:X的数学期望是 10分
扫码查看完整答案与解析