- 平面与平面垂直的判定与性质
- 共129题
如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点。
(1) 证明:平面BDC1⊥平面BDC
(2)平面BDC1分此棱柱为两部分,求这两部分体积的比。
正确答案
见解析
解析
证明:(1)由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,
∴BC⊥平面ACC1A1,又DC1⊂平面ACC1A1,
∴DC1⊥BC。
由题设知∠A1DC1=∠ADC=45°,
∴∠CDC1=90°,即DC1⊥DC,又DC∩BC=C,
∴DC1⊥平面BDC,又DC1⊂平面BDC1,
∴平面BDC1⊥平面BDC;
(2)设棱锥B﹣DACC1的体积为V1,AC=1,由题意得V1=×
×1×1=
,
又三棱柱ABC﹣A1B1C1的体积V=1,
∴(V﹣V1):V1=1:1,
∴平面BDC1分此棱柱两部分体积的比为1:1。
知识点
如图,四边形与
都是边长为a的正方形,点E是
的中点,
(1) 求证:;
(2) 求证:平面
(3) 求体积与
的比值。
正确答案
见解析。
解析
(1)
设BD交AC于M,连结ME.
∵ABCD为正方形,所以M为AC中点,
又∵E为的中点 ∴ME为
的中位线
∴又∵
∴. …………………4分
(2)∵ABCD为正方形 ∴
∵.
又
∵
∴. …………………8分
(3)(要有计算过程) …………………12分
知识点
已知,其中实数
满足
,且
的最大值是最小值的4倍,则
的值是
正确答案
解析
由题意可得,B(1,1)∴a<1,不等式组表示的平面区域为如图所示的△ABC及其内部,
由可得
,则
表示直线
在y轴上的截距,截距越大,
越大。
作直线L:y=-2x,把直线向可行域平移,当直线经过C时最小,当直线经过点B时,
最大,由
得
,此时
,
由 得
,此时
,
所以,
,
故选:B
知识点
如图,在三棱柱中,侧面
底面
,
,
,
,
为
中点。
(1)证明:平面
;
(2)若是线段
上一点,且满足
,求
的长度。
正确答案
见解析。
解析
(1)
,且
为
中点,
,又
侧面
底面
,交线为
,
,
平面
. (6分)
(2),因此
,即
,又在
中,
,
,
可得
,则
的长度为
. (12分)
知识点
如图,三棱柱ABC—A′B′C′=1,BC=1,BC′=1,CC′=,平面ABC⊥平面BCC′B′,E、F分别为棱AB、CC′的中点。
(1)求证;EF//平面A′B′C′;
(2)求证:平面ABC′⊥平面A′B′C′。
正确答案
见解析。
解析
(1)证明:取
,
,
又,
(2),
面
面
,且面
面
面
面
//面
,
面
,又
平面
面
面
知识点
扫码查看完整答案与解析