热门试卷

X 查看更多试卷
1
题型: 单选题
|
单选题 · 5 分

12.四棱锥的底面为正方形,侧面为等边三角形,且侧面底面,点在底面正方形内(含边界)运动,且满足,则点在正方形内的轨迹一定是(    )

A

B

C

D

正确答案

B

解析

解析已在路上飞奔,马上就到!

知识点

平面的基本性质及推论平面与平面垂直的判定与性质
1
题型: 单选题
|
单选题 · 5 分

15.若l,m为空间两条不同的直线,为空间两个不同的平面,则l 丄的一个充分条件是(  )

Al//

Bl

Cl丄//

Dl丄m且m//

正确答案

C

解析

解析已在路上飞奔,马上就到!

知识点

充分条件直线与平面平行的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

19.如图,四棱锥的底面是边长为8的正方形,四条侧棱长均为交于O点,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面平面平面GEFH.

(I)证明:平面ABCD;

(II)GH//EF;

(III)若,求四边形GEFH的面积.

正确答案

解析

解析已在路上飞奔,马上就到!

知识点

直线与直线平行的判定与性质直线与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
1
题型:简答题
|
简答题 · 14 分

17.如图,在四棱柱ABCD﹣A1B1C1D1中,AB=BC=CA=,AD=CD=AA1=1,平面AA1C1C⊥平面ABCD,E为线段BC的中点,

(Ⅰ)求证:BD⊥AA1

(Ⅱ)求证:A1E∥平面DCC1D1

(Ⅲ) 若AA1⊥AC,求A1E与面ACC1A1所成角大小.

正确答案

(Ⅰ)证明:在四棱锥ABCD﹣A1B1C1D1中,

∵AB=BC=CA,且AD=DC,

取AC中点O,则BO⊥AC,DO⊥AC,∴B,O,D三点在一条直线上.

又∵面AA1C1C⊥面ABCD,面AA1C1C∩面ABCD=AC,BD⊂面ABCD,BD⊥AC,

∴BD⊥面AA1C1C,AA1⊂面AA1C1C,∴BD⊥AA1

(Ⅱ)证明:连AE,在Rt△DCO中∠DCO=30°

在正△BCA中,∠BCO=60°,∴DC⊥BC,

又在正△BCA中,AE⊥BC,

∴AE∥DC,

又AE⊄面DCC1D1,DC⊂面DCC1D1,∴AE∥面DCC1D1

在四棱锥中,AA1∥DD1,AA1⊄面DCC1D1,DD1⊂面DCC1D1

∴AA1∥面DCC1D1

又AA1∩AE=A,

∴面A1AE∥面DCC1D1

又A1E⊂面AA1E,故A1E∥面DCC1D1

(Ⅲ)解:过E作AC的垂线,设垂足为N,∵面ABCD⊥面AA1C1C,∴EN⊥面AA1C1C,

连A1N,则A1N为A1E在面AA1C1C内的射影,

∴∠EA1N为直线A1E与面AC1所成角,

由已知得:,∴

解析

解析已在路上飞奔,马上就到!

知识点

直线与平面平行的判定与性质直线与直线垂直的判定与性质平面与平面垂直的判定与性质线面角和二面角的求法
1
题型: 单选题
|
单选题 · 5 分

5.已知为不同的直线,为不同的平面,则下列说法正确的是(   )

A

B

C

D

正确答案

D

解析

解析已在路上飞奔,马上就到!

知识点

命题的真假判断与应用直线与平面平行的判定与性质平面与平面平行的判定与性质直线与平面垂直的判定与性质平面与平面垂直的判定与性质
下一知识点 : 直线、平面垂直的综合应用
百度题库 > 高考 > 文科数学 > 平面与平面垂直的判定与性质

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题