- 双曲线
- 共3579题
已知双曲线x2-y2=4a(a∈R,a≠0)的右焦点是椭圆+
=1的一个顶点,则a=______.
正确答案
椭圆+
=1的右顶点为(4,0),
故双曲线x2-y2=4a(a∈R,a≠0)的右焦点是(4,0),
∴4a+4a=42,∴a=2.
故答案为:2.
设点P到点(-1,0)、(1,0)距离之差为2m,到x、y轴的距离之比为2,求m的取值范围.
正确答案
设点P的坐标为(x,y),依题设得=2,即y=±2x,x≠0
因此,点P(x,y)、M(-1,0)、N(1,0)三点不共线,得||PM|-|PN||<|MN|=2
∵||PM|-|PN||=2|m|>0
∴0<|m|<1
因此,点P在以M、N为焦点,实轴长为2|m|的双曲线上,故-
=1.
将y=±2x代入-
=1,并解得x2=
≥0,
因为1-m2>0,所以1-5m2>0,
解得0<|m|<,
即m的取值范围为(-,0)∪(0,
).
已知双曲线-
=1(a>0)的一个焦点F与抛物线y2=12x的焦点重合,则a=______,双曲线上一点P到F的距离为2,那么点P到双曲线的另一个焦点的距离为:______.
正确答案
根据题意,易得抛物线y2=12x的焦点为(3,0),
则双曲线-
=1(a>0)的一个焦点F坐标为(3,0),
则有a2=9-5=4,即a=2;
设点P到双曲线的另一个焦点的距离d,则有|d-2|=2a=4,
解可得,d=6或-2(舍去);
则点P到双曲线的另一个焦点的距离为6;
故答案为6.
以知F是双曲线-
=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为______.
正确答案
∵A点在双曲线的两只之间,且双曲线右焦点为F′(4,0),
∴由双曲线性质|PF|-|PF′|=2a=4
而|PA|+|PF′|≥|AF′|=5
两式相加得|PF|+|PA|≥9,当且仅当A、P、F’三点共线时等号成立.
故答案为9
设F1、F2是双曲线-
=1(a>0,b>0)的两个焦点,以线段F1F2为直径的圆与双曲线的一个交点为P,若PF1=2PF2,则双曲线的两条渐近线方程为______.
正确答案
根据双曲线第一定义 PF1=2PF2 PF1-PF2=2a
∴PF2=a
∵点P在圆上,以F1F2为直径,故△PF1F2为直角三角形
∴F1F2 PF1 PF2 的比例关系为:2:1
∴PF2=2a F1F2=2a=2c
∴b=2a 所以渐近线方程为y=±2x
故答案为:y=±2x.
过双曲线x2-y2=4的左焦点F1有一条弦PQ在左支上,若|PQ|=7,F2是双曲线的右焦点,则△PF2Q的周长是______.
正确答案
∵|PF2|-|PF1|=4,|QF2|-|QF1|=4
∵|PF1|+|QF1|=|PQ|=7
∴|PF2|+|QF2|-7=8,
∴|PF2|+|QF2|=15,
∴△F1PQ的周长=|PF2|+|QF2|+|PQ|=15+7=22,
故答案为:22.
点p到点A(-m,0)与到点B(m,0)(m>0)的距离之差为2,若P在直线y=x上,则实数m的取值范围为______.
正确答案
点P到点A(-m,0)B(m,0)(m>0)的距离之差的绝对值为2
P在以A、B为焦点,2a=2,a=1的双曲线上
b2=c2-a2=m2-1
双曲线方程为:x 2-=1
P在直线y=x上,则双曲线与y=x有交点,即:渐近线斜率大于1
m 2-1>1
m>
故答案为:
求与双曲线-
=1有共同渐近线,并且经过点(-3,2
)的双曲线方程.
正确答案
设所求双曲线为-
=λ(λ≠0),
把点(-3,2)代入,得
-
=λ,
解得λ=,
∴所示的双曲线方程为-
=1.
设双曲线的中心在原点,准线平行于x轴,离心率为,且点P(0,5)到此双曲线上的点的最近距离为2,求双曲线的方程.
正确答案
依题意,设双曲线的方程为-
=1(a>0,b>0).
∵e==
,c2=a2+b2,∴a2=4b2.
设M(x,y)为双曲线上任一点,则
|PM|2=x2+(y-5)2
=b2(-1)+(y-5)2
=(y-4)2+5-b2(|y|≥2b).
①若4≥2b,则当y=4时,
|PM|min2=5-b2=4,得b2=1,a2=4.
从而所求双曲线方程为-x2=1.
②若4<2b,则当y=2b时,
|PM|min2=4b2-20b+25=4,
得b=(舍去b=
),b2=
,a2=49.
从而所求双曲线方程为-
=1.
已知双曲线与椭圆+
=1有相同的焦点,它的一条渐近线为y=2x,求双曲线标准方程.
正确答案
设双曲线方程为x2-=λ(λ>0),
则-
=1(4分),
又椭圆+
=1的半焦距为
,
根据题意,得λ+4λ=5,解得λ=1,
所以双曲线方程为x2-=1(9分)
扫码查看完整答案与解析