- 参数方程的概念
- 共134题
在平面直角坐标系xoy中,直线l的参数方程是(其中t为参数),以ox为极轴的极坐标系中,圆C的极坐标方程为ρ=cosθ,则圆心C到直线l的距离为______.
正确答案
将直线l:化成普通方程,得
x-y=0
又∵圆C的极坐标方程为ρ=cosθ,
∴圆C的普通方程为(x-)2+y2=
,得点C(
,0)
因此,圆心C到直线l的距离为d==
故答案为:
选修4-4:《坐标系与参数方程》
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为(α为参数)
(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
正确答案
(I)把极坐标系下的点(4,)化为直角坐标,得P(0,4).
因为点P的直角坐标(0,4)满足直线l的方程x-y+4=0,
所以点P在直线l上.…(5分)
(II)设点Q的坐标为(cosα,sinα),
则点Q到直线l的距离为d==
cos(α+
)+2
由此得,当cos(α+
)=-1时,d取得最小值,且最小值为
.…(10分)
(坐标系与参数方程选做题) 已知直线l的参数方程为(t为参数),圆C的参数方程为
(θ为参数),则圆心C到直线l的距离为______.
正确答案
由直线l的参数方程为(t为参数),消去参数t得直线l的普通方程y=x+1.
由圆C的参数方程为(θ为参数),消去参数θ得圆C的普通方程(x-2)2+y2=1.
于是圆心C(2,0)到直线l的距离==
.
故答案为.
选修4-4:坐标系与参数方程
已知:直线l的参数方程为(t为参数),曲线C的参数方程为
(θ为参数).
(1)若在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求点Q到直线l的距离的最大值与最小值的差.
正确答案
(1)把点P的极坐标为(4,)化为直角坐标为(2,2
),
把直线l的参数方程 (t为参数),化为直角坐标方程为 y=
x+1,
由于点P的坐标不满足直线l的方程,故点P不在直线l上.
(2)∵点Q是曲线C上的一个动点,曲线C的参数方程为(θ为参数).
把曲线C的方程化为直角坐标方程为 (x-2)2+y2=1,表示以C(2,0)为圆心、半径等于1的圆.
圆心到直线的距离d==
+
,
故点Q到直线l的距离的最小值为d-r=-
,最大值为d+r=
+
,
∴点Q到直线l的距离的最大值与最小值的差为2.
在极坐标系中,定点A(1,),点B在直线ρcosθ+ρsinθ=0上运动,当线段AB最短时,点B的极坐标是______.
正确答案
直线ρcosθ+ρsinθ=0,化为x+y=0,与x+y=0垂直过A的直线方程为:y-1=x,这两条直线的交点是(-,
).
所以B的极坐标是(,
).
故答案为:(,
).
扫码查看完整答案与解析