热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题

在平面直角坐标系xoy中,直线l的参数方程是(其中t为参数),以ox为极轴的极坐标系中,圆C的极坐标方程为ρ=cosθ,则圆心C到直线l的距离为______.

正确答案

将直线l:化成普通方程,得x-y=0

又∵圆C的极坐标方程为ρ=cosθ,

∴圆C的普通方程为(x-2+y2=,得点C(,0)

因此,圆心C到直线l的距离为d==

故答案为:

1
题型:简答题
|
简答题

选修4-4:《坐标系与参数方程》

在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为(α为参数)

(I)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;

(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

正确答案

(I)把极坐标系下的点(4,)化为直角坐标,得P(0,4).

因为点P的直角坐标(0,4)满足直线l的方程x-y+4=0,

所以点P在直线l上.…(5分)

(II)设点Q的坐标为(cosα,sinα),

则点Q到直线l的距离为d==cos(α+)+2

由此得,当cos(α+)=-1时,d取得最小值,且最小值为.…(10分)

1
题型:填空题
|
填空题

(坐标系与参数方程选做题) 已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数),则圆心C到直线l的距离为______.

正确答案

由直线l的参数方程为(t为参数),消去参数t得直线l的普通方程y=x+1.

由圆C的参数方程为(θ为参数),消去参数θ得圆C的普通方程(x-2)2+y2=1.

于是圆心C(2,0)到直线l的距离==

故答案为

1
题型:简答题
|
简答题

选修4-4:坐标系与参数方程

已知:直线l的参数方程为(t为参数),曲线C的参数方程为(θ为参数).

(1)若在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,),判断点P与直线l的位置关系;

(2)设点Q是曲线C上的一个动点,求点Q到直线l的距离的最大值与最小值的差.

正确答案

(1)把点P的极坐标为(4,)化为直角坐标为(2,2),

把直线l的参数方程 (t为参数),化为直角坐标方程为 y=x+1,

由于点P的坐标不满足直线l的方程,故点P不在直线l上.

(2)∵点Q是曲线C上的一个动点,曲线C的参数方程为(θ为参数).

把曲线C的方程化为直角坐标方程为 (x-2)2+y2=1,表示以C(2,0)为圆心、半径等于1的圆.

圆心到直线的距离d==+

故点Q到直线l的距离的最小值为d-r=-,最大值为d+r=+

∴点Q到直线l的距离的最大值与最小值的差为2.

1
题型:填空题
|
填空题

在极坐标系中,定点A(1,),点B在直线ρcosθ+ρsinθ=0上运动,当线段AB最短时,点B的极坐标是______.

正确答案

直线ρcosθ+ρsinθ=0,化为x+y=0,与x+y=0垂直过A的直线方程为:y-1=x,这两条直线的交点是(-).

所以B的极坐标是().

故答案为:().

百度题库 > 高考 > 数学 > 参数方程的概念

扫码查看完整答案与解析

  • 上一题
  • 1/5
  • 下一题