- 抛物线的标准方程及图象
- 共391题
以坐标轴为对称轴,以原点为顶点且过圆x2+y2-2x+6y+9=0的圆心的抛物线的方程是( )
正确答案
如图展示了一个由区间(0,1)到实数集R的映射过程:区间(0,1)中的实数m对应数轴上的点M,如图1;将线段AB围成一个圆,使两端点A,B恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y轴上,点A的坐标为(0,1),如图3.图3中直线AM与x轴交于点N(n,0),则m的像就是n,记作f(m)=n.则在下列说法中正确命题的个数为( )
①f()=1;②f(x)为奇函数;③f(x)在其定义域内单调递增;④f(x)的图象关于点(
,0)对称.
正确答案
附加题:已知圆方程x2+y2+2y=0.
(1)以圆心为焦点,顶点在原点的抛物线方程是______.
(2)求x2y2的取值范围得______.
正确答案
(1)根据顶点在坐标原点,焦点是 (-1,0)的求得
抛物线y2=2px中参数p,p=2
∴抛物线方程为 y2=-4x.
故答案为 y2=-4x.
(2)z=x2y2=y2(-y2-2y)=-y4-2y3(其中-2≤y≤0),
当y=-时,z有最大值
,
当y=-2或0时,
z=0.
故x2y2∈[0,].
设点P(x,y)(y≥0)为平面直角坐标系xOy中的一个动点(O为坐标原点),点P到定点M(0,)的距离比点P到x轴的距离大
.
(1)求点P的轨迹方程;
(2)若直线l:y=kx+1与点P的轨迹相交于A、B两点,且|AB|=2,求k的值;
(3)设点P的轨迹曲线为C,点Q(x0,y0)(x0≤1)是曲线C上的一点,求以点Q为切点的曲线C的切线方程及切线倾斜角的取值范围.
正确答案
(1)过P作x轴垂线且垂足为N,由题意可知|PM|-|PN|=
而y≥0,∴|PN|=y,∴=y+
化简得x2=2y(y≥0)为所求的方程.
(2)设A(x1,y1),B(x2,y2),
联立,
得x2-2kx-2=0,
∴x1+x2=2k,
x1x2=-2|AB|==
=2
,
∴k4+3k2-4=0,
而k2≥0,
∴k2=1,
∴k=±1.
(3)因为Q(x0,y0)在曲线C上,
∴x02=2y0,
∴切点Q(x0,).
又y=x2求导得y'=x,
∴切线斜率k=x0
则切线方程为y-=x0(x-x0),
即2x0x-2y-x02=0为所求切线方程,
又x0≤1,
∴切线斜率k≤1,
∴倾斜角取值范围为[0,]∪(
,π).
某地兴建一休闲商业广场,欲在如图所示的一块不规则用地规划建成一个矩形的商业楼区,余下作为休闲区域,已知AB⊥BC,OABC,且AB=BC=2AO=4km,曲线段OC是以O为顶点且开口向上的抛物线的一段,如果要使矩形的相邻两边分别落在AB、BC上,且一个顶点落在曲线段OC上,应如何规划才能使矩形商业楼区的用地面积最大?
正确答案
解:如图,以O为原点,OA所在直线为x轴,建立直角坐标系,则C(2,4)
设抛物线方程为 x2=2py,代入点C(2,4)得,
所以抛物线C方程为y=x2(0≤x≤2)
设P(x,x2),|PQ|=2+x,|PN|=4﹣x2S=|PQ|×|PN|=(2+x)(4﹣x2)=8﹣x3﹣2x2+4x
由S'=﹣3x2﹣4x+4=0,得或x2=﹣2
因为0≤x<2,所以
当时,S'>0,S是x的增函数
当时,S'<0,S是x的减函数
所以,当时,S取得最大值
此时,,
故把商业楼区规划成长为,宽为
的矩形时,用地面积可最大
扫码查看完整答案与解析