- 相互独立事件同时发生的概率
- 共430题
在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.在第一次抽到理科题的条件下,第2次抽到理科题的概率为( )
正确答案
解析
解:∵5道题中有3道理科题和2道文科题,
则第一次抽到理科题的前提下,
第2次抽到理科题的概率
P==
故选C
已知箱中有4个白球和3个黑球,
(Ⅰ)有放回的任取两次,求都是白球的概率;
(Ⅱ)无放回的任取两次,求在第一次取得黑球的前提下,第二次取得白球的概率.
正确答案
解:(Ⅰ)有放回的任取两次,共有基本事件7×7=49种,都是白球,共有基本事件4×4=16种,
∴所求概率为;
(Ⅱ)袋中有4个白球,3个黑球,
在第一次取出黑球的条件下,还剩下4个白球,2黑球,
故第二次取出的情况共有6种,
其中第二次取出的是白球有4种,
故第一次取得黑球的前提下,第二次取得白球的概率是=
.
解析
解:(Ⅰ)有放回的任取两次,共有基本事件7×7=49种,都是白球,共有基本事件4×4=16种,
∴所求概率为;
(Ⅱ)袋中有4个白球,3个黑球,
在第一次取出黑球的条件下,还剩下4个白球,2黑球,
故第二次取出的情况共有6种,
其中第二次取出的是白球有4种,
故第一次取得黑球的前提下,第二次取得白球的概率是=
.
在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.
正确答案
解:一个基本事件是从5道题中不放回地抽取2道,它包含的基本事件数是A52=5×4=20.(1)设第一次抽到理科题为事件A,则它包含的基本事件的个数为A31A41=12,于是P(A)==
.
(2)设第1次和第2次都抽到理科题为事件B,则它包含的基本事件数为A31A21=6,于是P(B)=.
(3)因为5道题中有3道理科题和2道文科题,所以第一次抽到理科题的前提下,第2次抽到理科题的概率为P=.
解析
解:一个基本事件是从5道题中不放回地抽取2道,它包含的基本事件数是A52=5×4=20.(1)设第一次抽到理科题为事件A,则它包含的基本事件的个数为A31A41=12,于是P(A)==
.
(2)设第1次和第2次都抽到理科题为事件B,则它包含的基本事件数为A31A21=6,于是P(B)=.
(3)因为5道题中有3道理科题和2道文科题,所以第一次抽到理科题的前提下,第2次抽到理科题的概率为P=.
两位工人加工同一种零件共100个,甲加工了40个,其中35个是合格品,乙加工了60个,其中有50个合格,令A事件为”从100个产品中任意取一个,取出的是合格品”,B事件为”从100个产品中任意取一个,取到甲生产的产品”,则P(A|B)等于( )
正确答案
解析
解:由题意,P(A|B)表示在从100个产品中任意取一个,取到甲生产的产品的条件下,取出的是合格品的概率,则P(A|B)==
.
故选:C.
将两枚质地均匀的骰子各掷一次,设事件A={两个点数互不相同},B={至少出现一个5点},则概率P(A|B)等于( )
正确答案
解析
解:根据条件概率的含义,P(A|B)其含义为在B发生的情况下,A发生的概率,
即在“至少出现一个5点”的情况下,“两个点数都不相同”的概率,
“至少出现一个5点”的情况数目为6×6-5×5=11,
“两个点数都不相同”则只有一个5点,共C21×5=10种,
故P(A|B)=.
故选:A.
扫码查看完整答案与解析