- 两条直线平行与倾斜角、斜率的关系
- 共45题
1
题型:填空题
|
函数的最小正周期为。
正确答案
解析
.
知识点
两条直线平行与倾斜角、斜率的关系
1
题型:
单选题
|
从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于
正确答案
D
解析
略
知识点
两条直线平行与倾斜角、斜率的关系
1
题型:简答题
|
如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C。
(1)证明:B1C⊥AB;
(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高。
正确答案
见解析。
解析
(1)连接BC1,则O为B1C与BC1的交点,∵侧面BB1C1C为菱形,
∴BC1⊥B1C,∵AO⊥平面BB1C1C,∴AO⊥B1C,∵AO∩BC1=O,∴B1C⊥平面ABO,
∵AB⊂平面ABO,∴B1C⊥AB;
(2)作OD⊥BC,垂足为D,连接AD,作OH⊥AD,垂足为H,∵BC⊥AO,BC⊥OD,AO∩OD=O,
∴BC⊥平面AOD,∴OH⊥BC,∵OH⊥AD,BC∩AD=D,∴OH⊥平面ABC,∵∠CBB1=60°,
∴△CBB1为等边三角形,∵BC=1,∴OD=,∵AC⊥AB1,∴OA=B1C=,
由OH•AD=OD•OA,可得AD==,∴OH=,
∵O为B1C的中点,∴B1到平面ABC的距离为,∴三棱柱ABC﹣A1B1C1的高
知识点
两条直线平行与倾斜角、斜率的关系
1
题型:简答题
|
在△ABC中,内角所对的边分别为,已知.
(1)求证:成等比数列;
(2)若,求△的面积S.
正确答案
见解析。
解析
(1)由已知得:
,
,
,
再由正弦定理可得:,
所以成等比数列。
(2)若,则,
∴,
,
∴△的面积.
知识点
两条直线平行与倾斜角、斜率的关系
1
题型:填空题
|
如图已知圆中两条弦与相交于点,是延长
线上一点,且
若与圆相切,则的长为__________
正确答案
解析
设,,,由得,即.
∴,
由切割定理得,
∴
知识点
两条直线平行与倾斜角、斜率的关系
下一知识点 : 两条直线垂直的判定
扫码查看完整答案与解析