- 分组转化法求和
- 共45题
14.已知数列的前n项和Sn=10n-n2(n∈N+),则数列
的前n项和Tn为 。
正确答案
解析
当n=1时,a1=S1=9;
当n≥2时,an=Sn-Sn-1=11-2n,由于n=1时,a1=9也满足11-2n,因此an=11-2n.
(1)当n>5时,Tn=|a1|+|a2|+…+|an|=-Sn+2S5=n2-10n+50,
(2)当n≤5时,Tn=|a1|+|a2|+…+|an|=-(a1+a2+…+an)=10n-n2,
综合(1)(2),得Tn=
知识点
7. 数列{an}的通项公式an=ncos,其前n项和为Sn,则S2016等于( )
正确答案
解析
其中所有的奇数项都为0,而偶数项是分别为第二项是-2,第四项是4,第六项是-6,第八项是8,这样可以将每2项相加放在一起,刚好有1008个偶数项,即可以组成504组,每组的值为2,所有答案就为1008,故A正确。
考查方向
解题思路
算出前4项并找到这个数列的规律,最后用求和公式解决。
易错点
1、不能找到数列的周期性,没有找到规律导致无法计算下去。
知识点
17.已知等差数列{}的首项a2=5,前4项和
=28.(Ⅰ)求数列{
}的通项公式;(Ⅱ)若
=
,求数列{
}的前2n项和
.
正确答案
an=4n-3; T2n=4n
解析
⑴由已知条件:
⑵由⑴可得
考查方向
本题主要考查数列的综合运算
易错点
本题易在求和时发生错误。
知识点
11. 已知函数,且
,则
( )
正确答案
解析
,所以由已知条件知,
,
所以答案为50,选择A
考查方向
解题思路
先求出通项公式an,然后两项一组,即可求解数列的钱50项和
易错点
通项公式不会求
知识点
16.数列{an}的前n项和为Sn,若Sn-Sn一1=2n-l (),且S2 =3,则a1+a3的值为__________
正确答案
5
解析
由条件Sn-Sn一1=2n-l (),可以得到当n=2时,S1= a1=0
当n=3时,S3-S2=2×3-1=5,即a3=5
所以a1+a3=5
考查方向
解题思路
本题考查数列递推式,解题步骤如下:
根据条件求出S1= a1=0;2. 再根据S3-S2=a3求出a3.即可得到答案
易错点
对递推式不熟悉,代入的时候出错。
知识点
扫码查看完整答案与解析