- 弦切互化
- 共31题
9.若cos(–α)= ,则sin 2α=
正确答案
知识点
16.(本小题满分12分)
在△ABC中,角A,B,C的对边分别为a,b,c,已知
(Ⅰ)证明:a+b=2c;
(Ⅱ)求cosC的最小值.
正确答案
知识点
13.的内角
的对边分别为
,若
,
,
,则
.
正确答案
解析
试题分析:因为,且
为三角形内角,所以
,
,又因为
,
所以.
考查方向
解题思路
先根据,
求出
,再利用和角公式即可求出b。
易错点
相关知识点不熟悉导致出错。
教师点评
三角函数和差公式,正弦定理.
知识点
已知α为锐角,cos(α+)=
.
15.求tan(α+)的值;
16.求sin(2α+)的值.
正确答案
(1)2 ;
解析
解:(1)因为α∈(0,),所以α+
∈(
,
),
所以sin(α+)=
=
,
所以tan(α+)=
=2.
考查方向
解题思路
本题考查三角恒等变换,解题步骤如下:
1)利用平方关系求出sin(α+),然后利用商的关系求出tan(α+
);
2)利用已知角表示未知角sin(2α+)=sin[2(α+
)]=2 sin(α+
) cos(α+
),直接求解即可;
易错点
忽略角的范围取值和角与角的关系
正确答案
(2)
解析
解:
(2)因为sin(2α+)=sin[2(α+
)]=2 sin(α+
) cos(α+
)=
,
cos(2α+)=cos[2(α+
)]=2 cos2(α+
)-1=-
,
所以sin(2α+)=sin[(2α+
)-
]=sin(2α+
)cos
-cos(2α+
)sin
=
.
考查方向
解题思路
本题考查三角恒等变换,解题步骤如下:
1)利用平方关系求出sin(α+),然后利用商的关系求出tan(α+
);
2)利用已知角表示未知角sin(2α+)=sin[2(α+
)]=2 sin(α+
) cos(α+
),直接求解即可;
易错点
忽略角的范围取值和角与角的关系
9.若,则
( )
正确答案
解析
由已知,
=,选C.
考查方向
解题思路
三角恒等变换的主要题目类型是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算即可.本例应用两角和与差的正弦(余弦)公式化解所求式子,利用同角关系式使得已知条件可代入后再化简.
易错点
求解过程中注意公式的顺用和逆用
知识点
3. 已知,
,则
( )
正确答案
解析
,
又
,
所以,
。选A
考查方向
解题思路
1.先根据题中条件求出角;2.带入要求的式子利用诱导公式求解。
易错点
1.利用诱导公式在化简时出错;2.对于特殊角的三角函数值记忆出错。
知识点
6.已知,则
=
正确答案
解析
由得
,所以
,故选C。
考查方向
解题思路
1.先利用两角和的正切公式求出;2.将
转化为
后带入求解即可。
易错点
1. 的展开式展错;2.不会转化为齐次式的问题处理。
知识点
9.化简:4sin40°-tan40°等于( )
正确答案
解析
本题属于三角函数中的基本问题,题目的难度是逐渐由易到难。注意化简时对两角和差公式的选取.
考查方向
本题主要考查了三角函数的公式化简计算,在近几年的各省高考题出现的频率较高,常与三角恒等变形公式等知识点交汇命题。
解题思路
无
易错点
本题易在公式化简上发生错误。
知识点
9.化简:4sin40°-tan40°等于( )
正确答案
解析
试题分析:本题属于三角函数中的基本问题,题目的难度是逐渐由易到难。注意化简时对两角和差公式的选取.
考查方向
本题主要考查了三角函数的公式化简计算,在近几年的各省高考题出现的频率较高,常与三角恒等变形公式等知识点交汇命题。
解题思路
本题考查三角函数的公式化简计算,解题步骤如下:
由题可知,函数解析式化简为(2sin80°-sin40°)/cos40°=[2cos(40°-30°)-sin40°]/cos40°=cos40°/cos40°=
。
易错点
本题易在公式化简上发生错误。
知识点
14. 已知tan α=-,cos β=
,α∈(
,π),β∈(0,
),则tan(α+β)= .
正确答案
1
解析
由已知可得,,所以
考查方向
本题考查了同角三角函数的关系和两角和的正切公式。
解题思路
(1)求出。
(2)根据两角和的正切公式得出结果。
易错点
公式记错,导致结果错误。
知识点
扫码查看完整答案与解析