- 平行射影
- 共748题
如图所示,在△ABC中,AE∶EB=1∶3,BD∶DC=2∶1,AD与CE相交于F,求+
的值.
正确答案
解 过点D作DG∥AB交EC于G,
则=
=
=
,而
=
,
即=
,
所以AE=DG,
从而有AF=DF,
EF=FG=CG,
故+
=
+
=+1=
.
如图所示,在△ABC中,MN∥DE∥BC,若AE∶EC=7∶3,则DB∶AB的值为________.
正确答案
3∶10
由AE∶EC=7∶3,有EC∶AC=3∶10.
根据MN∥DE∥BC,可得DB∶AB=EC∶AC,即得DB∶AB=3∶10.
如图,已知是圆
的切线,切点为
,
是圆
的直径,
与圆
交于点
,
,圆
的半径是
,那么
正确答案
2
试题分析:∵是圆
的切线,∴
,又
,∴
点评:掌握切线的性质及切割线定理是解决此类问题的关键。
如图,在△ABC中,点E是AB的中点,EF∥BD,EG∥AC交BD于点G,CD=AD,若EG=5 cm,则AC=________cm;若BD=20 cm,则EF=________cm.
正确答案
15 10
∵E为AB的中点,EF∥BD,∴F为AD的中点.∵E为AB的中点,EG∥AC,∴G为BD的中点,当EG=5 cm时,则AD=10 cm.又CD=AD=5 cm,∴AC=15 cm.当BD=20 cm时,则EF=
BD=10 cm.
(本小题满分10分)
如图,、
是圆的两条平行弦,
∥
,
交
于
交圆于
,过
点的切线交
的延长线于
,
,
.
(1)求的长;
(2)求证:.
正确答案
(1); (2)
,
,而
,
,
.
试题分析:(1),
, …………(2分)
又,
,
, …………(4分)
,
…………(5分)
(2),
,而
, …………(8分)
,
. …………(10分)
点评:与圆有关的问题,若涉及线段长则往往要应用切线或割线定理,要能够利用圆周角或圆切角来证明三角形相似.
扫码查看完整答案与解析