- 平行射影
- 共748题
如图,在△ABC中,AB=AC=13,BC=10,D是AB的中点,过点D作DE^AC
于点E,则DE的长是 .
正确答案
略
选修41:几何证明选讲
如图,设AB为⊙O的任意一条不与直线l垂直的直径,P是⊙O与l的公共点,AC⊥l,BD⊥l,垂足分别为C,D,且PC=PD.
求证:(1) l是⊙O的切线;(2) PB平分∠ABD.
正确答案
(1) 连接OP,∵AC⊥l,BD⊥l,∴AC∥BD.
又OA=OB,PC=PD,∴OP∥BP,从而OP⊥l.
∵P在⊙O上,∴l是⊙O的切线.(6分)
(2) 连接AP,∵l是⊙O的切线,
∴∠BPD=∠BAP.
又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,
∴∠PBA=∠PBD,即PB平分∠ABD.(10分)
略
(14分)在直角坐标系中,以O为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.圆O的参数方程为
,(
为参数,
)
(1)求圆心的极坐标;
(2)当为何值时,圆O上的点到直线
的最大距离为3.
正确答案
解:(1)圆心坐标为------2分
设圆心的极坐标为
则----4分
所以圆心的极坐标为------ 6分
(2)直线的极坐标方程为
直线
的普通方程为
----8分
圆上的点到直线
的距离
……10分
即-----11分
圆上的点到直线
的最大距离为
-----13分
---- 14分
略
如图所示,已知,在边长为1的正方形ABCD的一边上取一点E,使AE=AD,从AB的中点F作HF⊥EC于H.
(1)求证:FH=FA;
(2)求EH∶HC的值.
正确答案
(1)见解析 (2)1∶4
解:(1)证明:连接EF,FC,在正方形ABCD中,AD=AB=BC,∠A=∠B=90°.
∵AE=AD,F为AB的中点,
∴=
.
∴△EAF∽△FBC,
∴∠AEF=∠BFC,∠EFA=∠BCF.
又∠A=∠B=90°,
∴∠EFC=90°,=
.
又∵∠EFC=∠B=90°,∴△EFC∽△FBC.
∴∠HEF=∠BFC,∠ECF=∠BCF.
∴∠AEF=∠HEF,∠AFE=∠HFE,又EF=EF,
∴△EAF≌△EHF,∴FH=FA.
(2)由(1)知△EFC是直角三角形,FH是斜边EC上的高,
由射影定理可得EF2=EH·EC,FC2=CH·CE,于是EH∶HC=EF2∶FC2.
由(1)得=
,于是EH∶HC=EF2∶FC2=1∶4.
如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D.过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=,则线段CD的长为________.
正确答案
如图,由相交弦定理得AF·FB=EF·FC,
∴FC==2,
∵FC∥BD,∴=
,BD=
=
.
又由切割线定理知BD2=DC·DA,
又由DA=4CD知4DC2=BD2=,∴DC=
.
明确相交弦定理、切割线定理等是解题的关键.
扫码查看完整答案与解析