- 平行射影
- 共748题
如图,在▱ABCD中,设E和F分别是边BC和AD的中点,BF和DE分别交AC于P、Q两点.
求证:AP=PQ=QC.
正确答案
见解析
证明 ∵四边形ABCD是平行四边形,E、F分别是BC、AD边上的中点,
∴DF綉BE,∴四边形BEDF是平行四边形.
∵在△ADQ中,F是AD的中点,FP∥DQ.
∴P是AQ的中点,∴AP=PQ.
∵在△CPB中,E是BC的中点,EQ∥BP,
∴Q是CP的中点,∴CQ=PQ,∴AP=PQ=QC.
如图,现在要在一块半径为1m.圆心角为60°的扇形纸板AOB上剪出一个平行四边形MNPQ,使点P在AB弧上,点Q在OA上,点M,N在OB上,设∠BOP=θ,YMNPQ的面积为S.
(1)求S关于θ的函数关系式;
(2)求S的最大值及相应θ的值
1.
2.
正确答案
略
选修4—1:几何证明选讲。如图,PA切圆O于点A,割线PBC经过圆心O,
OB=PB=1,OA绕点O逆时针旋转到OD.
(1)求线段PD的长;
(2)在如图所示的图形中是否有长度为的线段?若有,指出该线段;若没有,说明理由.
正确答案
(1)∵PA切圆O于点A,且B为PO中点,∴AB=OB=OA.
∴
----------------5分
(2)∵PA是切线,PB=BO=OC
------------------------10分
略
(坐标系与参数方程选做题)已知圆的极坐标方程ρ=2cosθ,直线的极坐标方程为
ρcosθ-2ρsinθ+7=0,则圆心到直线的距离为__
正确答案
略
(本小题满分10分)选修4-1《几何证明选讲》.
已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点
(Ⅰ)求证:BD平分∠ABC
(Ⅱ)若AB=4,AD=6,BD=8,求AH的长.
正确答案
解:(Ⅰ)
又
直线DE为圆0的切线
故 .
…………5分
(Ⅱ)且
又
…………8分
故 . …………10分
略
扫码查看完整答案与解析