- 直线与圆锥曲线的综合问题
- 共150题
经过点且与直线
相切的动圆的圆心轨迹为
,点
、
在轨迹
上,且关于
轴对称,过线段
(两端点除外)上的任意一点作直线
,使直线
与轨迹
在点
处的切线平行,设直线
与轨迹
交于点
、
。
(1)求轨迹的方程;
(2)证明:;
(3)若点到直线
的距离等于
,且△
的面积为20,求直线
的方程。
正确答案
见解析。
解析
(1)方法1:设动圆圆心为,依题意得,
,
整理,得,所以轨迹
的方程为
。
方法2:设动圆圆心为,依题意得点
到定点
的距离和点
到定直线
的距离相等,
根据抛物线的定义可知,动点的轨迹是抛物线。
且其中定点为焦点,定直线
为准线。
所以动圆圆心的轨迹
的方程为
(2)由(1)得,即
,则
。
设点,由导数的几何意义知,直线
的斜率为
。
由题意知点,设点
,
,
则,
即。
因为,
,
由于,即
。
所以,
(3)方法1:由点到
的距离等于
,可知
。
不妨设点在
上方(如图),即
,直线
的方程为:
。
由
解得点的坐标为
,
所以。
由(2)知,同理可得
。
所以△的面积
,
解得,
当时,点
的坐标为
,
,
直线的方程为
,即
,
当时,点
的坐标为
,
,
直线的方程为
,即
,
方法2:由点到
的距离等于
,可知
。
由(2)知,所以
,即
。
由(2)知,
。
所以。
即, ①
由(2)知, ②
不妨设点在
上方(如图),即
,由①、②解得
因为,
同理,
以下同方法1。
知识点
已知椭圆和直线L:
=1, 椭圆的离心率
,直线L与坐标原点的距离为
。
(1)求椭圆的方程;
(2)已知定点,若直线
与椭圆相交于C、D两点,试判断是否存在
值,使以CD为直径的圆过定点E?若存在求出这个
值,若不存在说明理由。
正确答案
见解析。
解析
(1)直线L:=1,∴
=
.① ,,,,,,,,,,,,,,,,,,2分
e=.② ,,,,,,,,,,,,,,,,,,4分
由①得,3
由②3得 ∴所求椭圆的方程是
+y2=1. ,,,,,,,,,,,,,,,,,,6分
(2)联立得:.
Δ ,,,,,,,,,,,,8分
设,则有
,,,,,,,,,,,,,,,,,,10分
∵,且以CD为圆心的圆点过点E,
∴EC⊥ED. ,,,,,,,,,,,,,,,,,,12分
则
∴,解得
=
>1,
∴当=
时以CD为直径的圆过定点E. ,,,,,,,,,,,,,,,,,。14分
知识点
已知抛物线的焦点为椭圆
的右焦点,且椭圆的长轴长为4,M、N是椭圆上的的动点。
(1)求椭圆标准方程;
(2)设动点满足:
,直线
与
的斜率之积为
,证明:存在定点
,使得
为定值,并求出
的坐标;
(3)若在第一象限,且点
关于原点对称,
垂直于
轴于点
,连接
并延长交椭圆于点
,记直线
的斜率分别为
,证明:
。
正确答案
见解析。
解析
(1)由题设可知:因为抛物线的焦点为
,
所以椭圆中的又由椭圆的长轴为4得
故
故椭圆的标准方程为:
(2)设,
由可得:
由直线OM与ON的斜率之积为可得:
,即
由①②可得:
M、N是椭圆上的点,故
故,即
由椭圆定义可知存在两个定点,
使得动点P到两定点距离和为定值;
(3)设,由题设可知
,
由题设可知斜率存在且满足
.③
将③代入④可得:
⑤
点在椭圆
,
故
知识点
已知圆:
,若椭圆
:
(
)的右顶点为圆
的圆心,离心率为
.
(1)求椭圆的方程;
(2)已知直线:
,若直线
与椭圆
分别交于
,
两点,与圆
分别交于
,
两点(其中点
在线段
上),且
,求
的值。
正确答案
(1)
(2)
解析
(1)设椭圆的焦距为,因为
,
,所以
………………2分
所以 所以椭圆
:
………………4分
(2)设(
,
),
(
,
)
由直线与椭圆
交于两点
,
,则
所以, 则
,
………………6分
所以………………8分
点(
)到直线
的距离
………………10分
则………………11分
显然,若点也在线段
上,则由对称性可知,直线
就是
轴,矛盾,
因为,所以
………………12分
所以
解得,即
………………14分
知识点
设为抛物线
上的两个动点,过
分别作抛物线
的切线
,与
分别交于
两点,且
,
(1)若,求点
的轨迹方程
(2)当所在直线满足什么条件时,P的轨迹为一条直线?(请千万不要证明你的结论)
(3)在满足(1)的条件下,求证:的面积为一个定值,并求出这个定值
正确答案
见解析。
解析
(1)设 ,
,
即
......①
同理, ......②
令 可求出
,
所以
由①,②,得
,
∴
(2)当所在直线过
的焦点时
(3)设 又由
得
所以
∴P到MN的距离为
∴
∴为定值
知识点
扫码查看完整答案与解析