- 直线与圆锥曲线的综合问题
- 共150题
如图,已知椭圆C: 的左、右焦点分别为F1、F2,离心率为
,点A是椭圆上任一点,△AF1F2的周长为
.
(1)求椭圆C的方程;
(2)过点任作一动直线l交椭圆C于M,N两点,记
,若在线段MN上取一点R,使得
,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.
正确答案
见解析。
解析
(1)∵△AF1F2的周长为,
∴即
. ……………………(1分)
又解得
………………(3分)
∴椭圆C的方程为………………………………(4分)
(2)由题意知,直线l的斜率必存在,
设其方程为
由
得…………………………………(6分)
则……………………………………(7分)
由,得
∴∴
.……………………………………(8分)
设点R的坐标为(),由
,
得
∴
解得………………(10分)
而
∴…………………………………………………(13分)
故点R在定直线上. ………………………………………………(14分)
知识点
已知椭圆的中心在坐标原点,两个焦点分别为
,
,点
在椭圆
上,过点
的直线
与抛物线
交于
两点,抛物线
在点
处的切线分别为
, 且
与
交于点
.
(1) 求椭圆的方程;
(2) 是否存在满足的点
? 若存在,指出这样的点
有几个(不必求出点
的坐标); 若不存在,说明理由。
正确答案
见解析。
解析
(1) 解法1:设椭圆的方程为
,
依题意: 解得:
∴ 椭圆的方程为
.
解法2:设椭圆的方程为
,
根据椭圆的定义得,即
,
∵, ∴
.
∴ 椭圆的方程为
.
(2)解法1:设点,
,则
,
,
∵三点共线,
∴.
∴,
化简得:. ①
由,即
得
.
∴抛物线在点
处的切线
的方程为
,
即. ②
同理,抛物线在点
处的切线
的方程为
. ③
设点,由②③得:
,
而,则
.
代入②得 ,
则,
代入 ① 得
,即点
的轨迹方程为
.
若 ,则点
在椭圆
上,而点
又在直线
上,
∵直线经过椭圆
内一点
,
∴直线与椭圆
交于两点.
∴满足条件 的点
有两个.
解法2:设点,
,
,
由,即
得
.
∴抛物线在点
处的切线
的方程为
,
即.
∵, ∴
。
∵点在切线
上, ∴
. ①
同理, . ②
综合①、②得,点的坐标都满足方程
.
∵经过两点的直线是唯一的,
∴直线的方程为
,
∵点在直线
上, ∴
.
∴点的轨迹方程为
.
若 ,则点
在椭圆
上,又在直线
上,
∵直线经过椭圆
内一点
,
∴直线与椭圆
交于两点.
∴满足条件 的点
有两个.
解法3:显然直线的斜率存在,设直线
的方程为
,
由消去
,得
.
设,则
.
由,即
得
.
∴抛物线在点
处的切线
的方程为
,
即.
∵, ∴
.
同理,得抛物线在点
处的切线
的方程为
.
由解得
∴.
∵,
∴点在椭圆
上.
∴.
化简得.(*)
由,
可得方程(*)有两个不等的实数根. ∴满足条件的点有两个.
知识点
已知点,点
在
轴上,点
在
轴的正半轴上,点
在直线
上,且满足
.
(1)当点在
轴上移动时,求点
的轨迹
的方程;
(2)设、
为轨迹
上两点,且
>1,
>0,
,求实数
,使
,且
正确答案
见解析。
解析
(1)设点,由
得
.
由,得
,即
.
又点在
轴的正半轴上,∴
.故点
的轨迹
的方程是
.
(2)由题意可知为抛物线
:
的焦点,且
、
为过焦点
的直线与抛物
线的两个交点,所以直线
的斜率不为
.
当直线斜率不存在时,得
,不合题意;
当直线斜率存在且不为
时,设
,代入
得
,
则,解得
.
代入原方程得,由于
,所以
,由
,
得,∴
.
知识点
已知椭圆的离心率为
,短轴一个端点到右焦点的距离为3。
(1)求椭圆C的方程;
(2)过椭圆C上的动点P引圆O:x2+y2=b2的两条切线PA、PB,A、B分别为切点,试探究椭圆C上是否存在点P,由点P向圆O所
引的两条切线互相垂直?若存在,请求出点P的坐标;若不存在, 请说明理由。
正确答案
见解析。
解析
(1)设椭圆的半焦距为c,依题意
∴b=2,
∴所求椭圆方程为
(2)如图,设P点坐标为(x0,y0),
若∠APB=900,则有
即
有
两边平方得 ……①
又因为P(x0,y0)在椭圆上,所以 ……②
①,②联立解得,
所以满足条件的有以下四组解
,
,
,
所以,椭圆C上存在四个点,
,
,
,分别由这四个点向圆O所引的两条切线均互相垂直。
知识点
已知椭圆的离心率为
,过右焦点做垂直于
轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
.
(1)求椭圆的标准方程;
(2)设点,直线
:
,过
任作一条不与
轴重合的直线与椭圆相交于
两点,若
为
的中点,
为
在直线
上的射影,
的中垂线与
轴交于点
.求证:
为定值.
正确答案
见解析。
解析
(1)解:由题意可得
,解得
-----------------2分
∴椭圆的标准方程为. -----------------4分
(2)设直线的方程为
,
联立直线与椭圆的方程
,整理得
-----------------6分
∵直线与椭圆有两个公共点,∴
∴或
. -----------------7分
由
得
-----------------9分
设则
∴直线的方程
,令
,得
-----------------11分
∴
-----------------12分
∴=
. -----------------13分
知识点
扫码查看完整答案与解析