- 直线与圆锥曲线的综合问题
- 共150题
如图,设椭圆的左右焦点为
,上顶点为
,点
关于
对称,且
(1)求椭圆的离心率;
(2)已知是过
三点的圆上的点,若
的面积为
,求点
到直线
距离的最大值。
正确答案
见解析
解析
(1)
由及勾股定理可知
,即
因为,所以
,解得
(2)由(1)可知是边长为
的正三角形,所以
解得
由可知直角三角形
的外接圆以
为圆心,半径
即点在圆
上,
因为圆心到直线
的距离为
故该圆与直线相切,所以点
到直线
的最大距离为
知识点
设F为抛物线E: 的焦点,A、B、C为该抛物线上三点,已知
且
(1)求抛物线方程;
(2)设动直线l与抛物线E相切于点P,与直线相交于点Q。证明以PQ为直径的圆恒过y轴上某定点。
正确答案
见解析
解析
解析:(1)由知
又
所以
所以所求抛物线方程为
(2)设点P(,
),
≠0. ∵Y=
,
,
切线方程:y-=
,即y=
由 ∴Q(
,-1)
设M(0,)∴
,∵
·
=0
-
-
+
+
=0,又
,∴联立解得
=1
故以PQ为直径的圆过y轴上的定点M(0,1)
知识点
已知椭圆C: (a>b>0)的两个焦点和短轴的两个端点都在圆x2+y2=1上.
(1)求椭圆C的方程;
(2)若斜率为k的直线过点M(2,0),且与椭圆C相交于A,B两点.试探讨k为何值时,三 角形OAB为直角三角形.
正确答案
见解析
解析
解析:(1)
所以椭圆方程为………4分
(2)由已知直线AB的斜率存在,设AB的方程为:
由 得
得:,即
-------6分
设,
(1)若为直角顶点,则
,即
,
,所以上式可整理得,
,解,得
,满足
-------8分
(2)若为直角顶点,不妨设以
为直角顶点,
,则
满足:
,解得
,代入椭圆方程,整理得,
解得,,满足
-------10分
时,三角形
为直角三角形. -------12分
知识点
已知圆锥曲线的两个焦点坐标是
,且离心率为
;
(1)求曲线的方程;
(2)设曲线表示曲线
的
轴左边部分,若直线
与曲线
相交于
两点,求
的取值范围;
(3)在条件(2)下,如果,且曲线
上存在点
,使
,求
的值。
正确答案
(1)
(2)
(3)m=4
解析
(1)由知,曲线
是以
为焦点的双曲线,且
,
故双曲线的方程是
,
(2)设,联立方程组:
,
从而有:为所求。
(3)因为,
整理得或
,
注意到,所以
,故直线
的方程为
。
设,由已知
,
又,所以
。
在曲线
上,得
,
但当时,所得的点在双曲线的右支上,不合题意,
所以为所求。
知识点
21.已知椭圆的离心率为
,过顶点
的直线
与椭圆
相交于两点
。
(1)求椭圆的方程;
(2)若点在椭圆上且满足
,求直线
的斜率
的值。
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
扫码查看完整答案与解析