热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 5 分

9.已知等比数列满足,,则(   )

正确答案

C

解析

由题意可得 ,所以 ,故 ,选C.

考查方向

本题主要考查等比数列性质及基本运算,属于基础题目.

解题思路

解决本题的关键是利用等比数列性质 得到一个关于 的一元二次方程,再通过解方程求的值,我们知道,等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.

易错点

等比数列性质的灵活应用

知识点

等比数列的判断与证明
1
题型: 单选题
|
单选题 · 5 分

4.设,则(   )

A

B

C

D

正确答案

C

解析

因为,所以

故答案选.

考查方向

本题考查函数值的求法,是中档题,解题时要认真审题,注意分段函数的性质的合理运用.

解题思路

本题考查分段函数和复合函数求值,此题需要先求的值,继而去求的值;.若求函数的值,需要先求的值,再去求的值;若是解方程的根,则需先令,即,再解方程求出的值,最后在解方程;属于基础题.

易错点

注意运算的准确性.

知识点

等比数列的判断与证明
1
题型:填空题
|
填空题 · 5 分

14.已知{}为等差数列,公差为1,且a5是a3与a11的等比中项,则a1=_________.

正确答案

-1

解析

考查方向

本题考察了等差数列的通项公式和等比中项,比较简单

解题思路

1)使用等差数列通项公式使用a1和d表示a5,a3,a11

2)使用等比中项公式得到关系式 计算得出a1

易错点

主要易错于计算出错

知识点

等差数列的性质及应用等比数列的判断与证明
1
题型:填空题
|
填空题 · 20 分

请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。

正确答案

测试

1
题型: 单选题
|
单选题 · 5 分

),则在中,正数的个数是

A16

B72

C86

D100

正确答案

C

解析

依据正弦函数的周期性,可以找其中等于零或者小于零的项.

知识点

等比数列的性质及应用
1
题型:填空题
|
填空题 · 4 分

盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是______(结果用最简分数表示)。

正确答案

解析

从4个奇数和3个偶数共7个数中任取2个,共有=21个,2个数之积为奇数2个数分别为奇数,共有=6个,所以2个数之积为偶数的概率P=1-=1-.

知识点

等比数列的性质及应用
1
题型:简答题
|
简答题 · 12 分

等差数列{an}中,a7=4,a19=2a9.

(1)求{an}的通项公式;

(2)设,求数列{bn}的前n项和Sn.

正确答案

见解析。

解析

(1)设等差数列{an}的公差为d,则

an=a1+(n-1)d.

因为

所以

解得a1=1,.

所以{an}的通项公式为.

(2)因为

所以.

知识点

等比数列的性质及应用
1
题型:简答题
|
简答题 · 12 分

已知等差数列{an}满足:a1=2,且a1,a2,a5成等比数列。

(1)求数列{an}的通项公式;

(2)记Sn为数列{an}的前n项和,是否存在正整数n,使得Sn>60n+800?若存在,求n的最小值;若不存在,说明理由。

正确答案

见解析。

解析

(1)设数列{an}的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),

化简得d2﹣4d=0,解得d=0或4,

当d=0时,an=2,

当d=4时,an=2+(n﹣1)•4=4n﹣2。

(2)当an=2时,Sn=2n,显然2n<60n+800,

此时不存在正整数n,使得Sn>60n+800成立,

当an=4n﹣2时,Sn==2n2

令2n2>60n+800,即n2﹣30n﹣400>0,

解得n>40,或n<﹣10(舍去),

此时存在正整数n,使得Sn>60n+800成立,n的最小值为41,

综上,当an=2时,不存在满足题意的正整数n,

当an=4n﹣2时,存在满足题意的正整数n,最小值为41

知识点

等差数列的性质及应用等比数列的性质及应用数列与不等式的综合
1
题型:简答题
|
简答题 · 12 分

已知是以a为首项,q为公比的等比数列,为它的前n项和。

(1)当成等差数列时,求q的值;

(2)当成等差数列时,求证:对任意自然数k,也成等差数列。

正确答案

见解析

解析

(1)由已知,,因此

成等差数列时,,可得

化简得,解得

(2)若,则的每项,此时显然成等差数列。

,由成等差数列可得,即

整理得,因此,

所以,也成等差数列。

知识点

等差数列的判断与证明等差数列的性质及应用等比数列的基本运算等比数列的性质及应用
1
题型:简答题
|
简答题 · 14 分

19.设数列的前项和为.已知,且当时,

(1)求的值;

(2)证明:为等比数列;

(3)求数列的通项公式。

正确答案

(1)令可得的值;

(2)先将)转化为,再利用等比数列的定义可证是等比数列;

(3)先由(2)可得数列的通项公式,再将数列的通项公式转化为数列是等差数列,进而可得数列的通项公式.

试题解析:

(1)当时,,即,解得:

(2)因为),所以),即),因为,所以,因为,所以数列是以为首项,公比为的等比数列

(3)由(2)知:数列是以为首项,公比为的等比数列,

所以

,所以数列是以为首项,公差为的等差数列,

所以,即

所以数列的通项公式是

解析

解析已在路上飞奔,马上就到!

知识点

由递推关系式求数列的通项公式等比数列的判断与证明
下一知识点 : 数列求和、数列的综合应用
百度题库 > 高考 > 文科数学 > 等比数列

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题