热门试卷

X 查看更多试卷
1
题型:填空题
|
填空题 · 20 分

请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。

正确答案

测试

1
题型:填空题
|
填空题 · 20 分

请你谈一谈对“不同生产方式以及生产工艺中,生产物流管理所采用的方法和手段是不同的。”这句话的理解。

正确答案

测试

1
题型:填空题
|
填空题 · 5 分

在极坐标系中,点到直线ρsin θ=2的距离等于__________。

正确答案

1

解析

在极坐标系中,点对应直角坐标系中坐标为(,1),直线ρsin θ=2对应直角坐标系中的方程为y=2,所以点到直线的距离为1.

知识点

点到直线的距离公式简单曲线的极坐标方程极坐标刻画点的位置点的极坐标和直角坐标的互化
1
题型:填空题
|
填空题 · 5 分

的圆心到直线的距离为_________ 。

正确答案

3

解析

知识点

点到直线的距离公式简单曲线的极坐标方程点的极坐标和直角坐标的互化
1
题型:简答题
|
简答题 · 13 分

如图,已知椭圆的中心在坐标原点,长轴均为且在轴上,短轴长分别

,过原点且不与轴重合的直线的四个交点按纵坐标从

大到小依次为A,B,C,D,记,△和△的面积分别为.

(1)当直线轴重合时,若,求的值;

(2)当变化时,是否存在与坐标轴不重合的直线l,使得?并说明理由。

正确答案

(1);(2)当1<λ≤时,不存在与坐标轴不重合的直线l,使得S1=λS2;当λ>时,存在与坐标轴不重合的直线l使得S1=λS2.

解析

依题意可设椭圆C1和C2的方程分别为

C1,C2.

其中a>m>n>0,λ=.

(1)解法1:

如图1,若直线l与y轴重合,即直线l的方程为x=0,则S1|BD|·|OM|=a|BD|,S2|AB|·|ON|=a|AB|,

所以.

在C1和C2的方程中分别令x=0,可得yA=m,yB=n,yD=-m,

于是.

,则,化简得λ2-2λ-1=0.

由λ>1,可解得λ=.

故当直线l与y轴重合时,若S1=λS2,则λ=.

解法2:如图1,若直线l与y轴重合,则

|BD|=|OB|+|OD|=m+n,|AB|=|OA|-|OB|=m-n;

S1|BD|·|OM|=a|BD|,

S2|AB|·|ON|=a|AB|。

所以.

,则,化简得λ2-2λ-1=0.

由λ>1,可解得λ=.

故当直线l与y轴重合时,若S1=λS2,则λ=.

(2)解法1:

如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.根据对称性,不妨设直线l:y=kx(k>0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,则,所以d1=d2.

又S1|BD|d1,S2|AB|d2,所以,即|BD|=λ|AB|。

由对称性可知|AB|=|CD|,所以|BC|=|BD|-|AB|=(λ-1)|AB|,

|AD|=|BD|+|AB|=(λ+1)|AB|,于是

.①

将l的方程分别与C1,C2的方程联立,可求得

.

根据对称性可知xC=-xB,xD=-xA,于是

.②

从而由①和②式可得

.③

,则由m>n,可得t≠1,于是由③可解得.

因为k≠0,所以k2>0.于是③式关于k有解,当且仅当

等价于由λ>1,可解得<t<1,

,由λ>1,解得λ>,所以

当1<λ≤时,不存在与坐标轴不重合的直线l,使得S1=λS2

当λ>时,存在与坐标轴不重合的直线l使得S1=λS2.

解法2:如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.根据对称性,不妨设直线l:y=kx(k>0),

点M(-a,0),N(a,0)到直线l的距离分别为d1,d2

,所以d1=d2.

又S1|BD|d1,S2|AB|d2,所以.

因为,所以.

由点A(xA,kxA),B(xB,kxB)分别在C1,C2上,可得,两式相减可得

依题意xA>xB>0,所以.所以由上式解得.

因为k2>0,所以由,可解得.

从而,解得λ>,所以

当1<λ≤时,不存在与坐标轴不重合的直线l,使得S1=λS2

当λ>时,存在与坐标轴不重合的直线l使得S1=λS2.

知识点

一元二次不等式的解法点到直线的距离公式椭圆的几何性质直线与椭圆的位置关系
1
题型:填空题
|
填空题 · 5 分

在极坐标系中,定点,点B在直线

运动,当线段AB最短时,点B的极坐标为______.

正确答案

解析

知识点

点到直线的距离公式简单曲线的极坐标方程极坐标刻画点的位置点的极坐标和直角坐标的互化
1
题型: 单选题
|
单选题 · 5 分

在极坐标系中,点到直线的距离是(   ),

A

B

C1

D

正确答案

B

解析

知识点

点到直线的距离公式简单曲线的极坐标方程
1
题型:填空题
|
填空题 · 4 分

定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x 2+a到直线l:y=x的距离等于C2:x 2+(y+4) 2 =2到直线l:y=x的距离,

则实数a=______________。

正确答案

解析

C2:x 2+(y+4) 2 =2,圆心(0,—4),圆心到直线l:y=x的距离为:,故曲线C2到直线l:y=x的距离为

另一方面:曲线C1:y=x 2+a,令,得:,曲线C1:y=x 2+a到直线l:y=x的距离的点为(),

知识点

点到直线的距离公式抛物线的标准方程和几何性质
1
题型:填空题
|
填空题 · 5 分

在极坐标系中,为曲线上的点,为曲线上的点,则线段长度的最小值是()。

正确答案

2

解析

知识点

点到直线的距离公式直线的参数方程圆的参数方程
1
题型:填空题
|
填空题 · 5 分

当圆的圆心到直线的距离最大时,()。

正确答案

0

解析

知识点

点到直线的距离公式圆的标准方程
下一知识点 : 两条平行直线间的距离
百度题库 > 高考 > 理科数学 > 点到直线的距离公式

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题