- 电磁感应
- 共8761题
一个500匝的线圈,其电阻为5Ω,将它与电阻为495Ω的电热器连成闭合电路.若在0.3s内,穿过线圈的磁通量从0.03Wb均匀增加到0.09wb,则线圈中产生的感应电动势为______V,通过电热器的电流为______A.
正确答案
100
0.2
解析
解:根据法拉第电磁感应定律得,E==
.
根据闭合电路欧姆定律得,I=.
故答案为:100,0.2.
某学习小组设计了一种发电装置如图甲所示,图乙为其俯视图.将8块外形相同的磁铁交错放置组合成一个高h=0.5m、半径r=0.2m的圆柱体,其可绕固定轴OO′逆时针(俯视)转动,角速度ω=100rad/s.设圆柱外侧附近每个磁场区域的磁感应强度大小均为B=0.2T、方向都垂直于圆柱体侧表面.紧靠圆柱体外侧固定一根与其等高、电阻R1=0.5Ω的细金属杆ab,杆与轴OO′平行.图丙中阻值R=1.5Ω的电阻与理想电流表A串联后接在杆a、b两端.下列说法正确的是( )
正确答案
解析
解:
A、B导体切割磁感线产生的感应电动势为 E=Bhv
又 v=ωr
解得 E=2V
由于ab杆中产生的感应电动势E的大小保持不变,所以杆ab产生的感应电动势的有效值E=2V,则电流表A的示数为I==
=1A.故A错误,B正确.
C电阻R消耗的电功率为P=I2R=12×1.5W=1.5W,故C错误.
D、由楞次定律判断可知,通过电流表的电流方向周期性变化,在一个周期内两种方向通过电流表的电量相等,所以在圆柱体转过一周的时间内,流过电流表A的总电荷量为零.
故D正确.
故选BD
如图所示,一个50匝的线圈的两端与一个R=99Ω的电阻相连接,置于竖直向下的匀强磁场中.线圈的横截面积是20cm2,电阻为1Ω.磁感应强度以100T/s的变化率均匀减小.在这一过程中通过电阻R的电流为多大?10s内R产生的热量为多少?
正确答案
解:根据法拉第电磁感应定律得感应电动势为:
=
.
根据闭合电路欧姆定律得电流为:
I=.
产生的热量为:
Q=I2Rt=0.01×99×10J=9.9J.
答:这一过程中通过电阻R的电流为0.1A,10s内R产生的热量为9.9J.
解析
解:根据法拉第电磁感应定律得感应电动势为:
=
.
根据闭合电路欧姆定律得电流为:
I=.
产生的热量为:
Q=I2Rt=0.01×99×10J=9.9J.
答:这一过程中通过电阻R的电流为0.1A,10s内R产生的热量为9.9J.
如图1所示,一个匝数为50匝的圆形线圈M,它的两端点a、b与内阻很大的电压表相连,线圈中磁通量的变化规律如图2所示,则ab两点的电势高低与电压表读数正确的为( )
正确答案
解析
解:从图中发现:线圈的磁通量是增大的,根据楞次定律,感应电流产生的磁场跟原磁场方向相反,即感应电流产生的磁场方向为垂直纸面向外,根据安培定则,我们可以判断出线圈中感应电流的方向为:逆时针方向.
在回路中,线圈相当于电源,由于电流是逆时针方向,所以a相当于电源的正极,b相当于电源的负极,所以a点的电势大于b点的电势.
根据法拉第电磁感应定律得:
E=n•=50×2 v=100v
电压表读数为100v.
故选B.
如图,匀强磁场的磁感应强度方向垂直于纸面向里,大小随时间的变化率
=k,k为正的常量.用电阻率为ρ、横截面积为S的硬导线做成一边长为l的方框.将方框固定于纸面内,其右半部位于磁场区域中.求:
(1)导线中感应电流的大小;
(2)磁场对方框作用力的大小随时间的变化率.
正确答案
解:(1)感应电动势:E==
S=
kl2,
线框电阻:R=ρ,
电流:I==
;
(2)磁场对方框作用力的大小F=BIl,B=B0+kt,
则:F=,
=
;
答:(1)导线中感应电流的大小;
(2)磁场对方框作用力的大小随时间的变化率为.
解析
解:(1)感应电动势:E==
S=
kl2,
线框电阻:R=ρ,
电流:I==
;
(2)磁场对方框作用力的大小F=BIl,B=B0+kt,
则:F=,
=
;
答:(1)导线中感应电流的大小;
(2)磁场对方框作用力的大小随时间的变化率为.
一个单匝闭合圆形线圈置于垂直线圈平面的匀强磁场中,当磁感应强度变化率恒定时,线圈中的感应电动势为E,感应电流为I.若把这根导线均匀拉长,从而使圆半径增大一倍,则此时线圈中的感应电动势为______,感应电流为______.
正确答案
4E
I
解析
解:(1)由法拉第电磁感应定律得:E=n=n
πR2,
因n、相同,则得到:E:E′=R2:R′2=1:4.
(2)根据电阻定律:线圈的电阻为r=ρ,则ρ相同,而L增长一倍,而s变为原来的一半,两线圈电阻之比:rA:rB=1:4.
线圈中感应电流I=,由(1)(2)综合得到:IA:IB=1:1
故答案为:4E,I.
一个N匝圆线圈,放在磁感应强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是( )
正确答案
解析
解:
A、法拉第电磁感应定律:E=N,将线圈的匝数变化时,说明
一定时,E与N成正比.当线圈匝数增加为原来的1倍,则线圈产生的感应电动势也增加为原来的1倍,但线圈电阻也增加原来的1倍,因此线圈中的感应电流没有变化.故A错误;
B、由法拉第电磁感应定律:E=N,将线圈的面积增加1倍时,则△φ也增加1倍,则线圈产生的感应电动势是原来的2倍.线圈的面积增加1倍,半径为原来的
,周长也为原来的
,由电阻定律R=ρ
,可得线圈电阻是原来的
倍,因此线圈中的感应电流是原来的
倍,故B错误.
C、法拉第电磁感应定律:E=N,将线圈的直径增加1倍时,则线圈面积是原来的4倍,因此△φ也是原来的4倍,所以线圈产生的感应电动势是原来的4倍,由电阻定律R=ρ
,可得线圈电阻是原来的2倍,因此线圈中的感应电流是原来的2倍,即线圈中产生的感应电流增大1倍,故C正确;
D、由I=•
•sinθ,将线圈与磁场方向的夹角改变时,sinθ可以变为原来的2倍,电流可以变为原来的2倍,故D正确.
故选:CD
如图所示,水平桌面上放有电阻不计的光滑导轨和长为10cm导体棒,它们与电阻为R=10Ω的小灯泡组成闭合电路,整个装置处于方向竖直向上的磁场中,当磁通量在0.1s内从0.2Wb均匀增加到0.4Wb时,求:
(1)电路中产生的感应电动势;
(2)小灯泡在10s内产生的热量为多少.
正确答案
解:(1)当磁通量发生变化时,闭合电路中要产生感应电动势,大小为:.
(2)小灯泡上的电流为:
小灯泡在10s钟内产生的热量为:Q=I2Rt=0.04×10×10J=4J.
答:(1)电路中产生的感应电动势为2V.
(2)小灯泡在10s内产生的热量为4J.
解析
解:(1)当磁通量发生变化时,闭合电路中要产生感应电动势,大小为:.
(2)小灯泡上的电流为:
小灯泡在10s钟内产生的热量为:Q=I2Rt=0.04×10×10J=4J.
答:(1)电路中产生的感应电动势为2V.
(2)小灯泡在10s内产生的热量为4J.
水平放置的线圈匝数n=2000匝,直径d1=80cm,内阻可忽略.在线圈的中心有一个长为40cm宽为20cm的长方形有界匀强磁场,磁感应强度按图1所示规律变化,规定垂直纸面向里的磁感应强度方向为正方向,并把线圈与图2电动机电路的左端的两个端点连接,图2所示是一提升重物用的直流电动机工作时的电路图.电动机内电阻r=0.8Ω,电路中另一电阻R=10Ω,电压表示数U=110V.试求:
(1)通过电动机的电流;
(2)输入电动机的电功率;
(3)若电动机以v=1m/s匀速竖直向上提升重物,求该重物的质量?(g取10m/s2)
正确答案
解:(1)根据法拉第电磁感应定律得:
E=n=2000×
×0.4×0.2V=160V.
因电压表的示数为UV=110V,则电阻R的电压为U=E-UV=160-110=50V;
则通过电阻R电流为:I==
A=5A.
(2)由题意可知,电压表的示数,即为电动机两端的电压,为:U=110V;
那么输入电动机的功率P=UI=110×5=550W;
(3)因电动机内电阻r=0.8Ω,则内阻消耗的功率为P损=I2r;
所以电动机输出的功率P出=P-P损=550-52×0.8=530W;
因此P出=mgv,则m==
=53kg;
答:(1)通过电动机的电流5A;
(2)输入电动机的电功率550W;
(3)若电动机以v=1m/s匀速竖直向上提升重物,该重物的质量53kg.
解析
解:(1)根据法拉第电磁感应定律得:
E=n=2000×
×0.4×0.2V=160V.
因电压表的示数为UV=110V,则电阻R的电压为U=E-UV=160-110=50V;
则通过电阻R电流为:I==
A=5A.
(2)由题意可知,电压表的示数,即为电动机两端的电压,为:U=110V;
那么输入电动机的功率P=UI=110×5=550W;
(3)因电动机内电阻r=0.8Ω,则内阻消耗的功率为P损=I2r;
所以电动机输出的功率P出=P-P损=550-52×0.8=530W;
因此P出=mgv,则m==
=53kg;
答:(1)通过电动机的电流5A;
(2)输入电动机的电功率550W;
(3)若电动机以v=1m/s匀速竖直向上提升重物,该重物的质量53kg.
半径为10cm的圆形线圈共100匝,垂直穿过线圈圆面的匀强磁场磁感应强度B=0.5T.假如此磁场在0.1s内转过37°角,求这段时间内在线圈里产生的感生电动势的平均值.
正确答案
解:平均感应电动势:
E=n=n
=
V=3.14V;
答:这段时间内在线圈里产生的感生电动势的平均值3.14V.
解析
解:平均感应电动势:
E=n=n
=
V=3.14V;
答:这段时间内在线圈里产生的感生电动势的平均值3.14V.
如图所示,有一U形金属导轨MNPQ,处在与它垂直的匀强磁中.有一导体棒ab在导轨上向右匀速运动,经过0.1s,从“1”位置运动到“2”位置.这个过程中,穿过由导轨和导体棒组成的闭合回路的磁通量从0.05Wb增加到0.15Wb.求:
(1)这段时间内通过回路的磁通量的变化量;
(2)这段时间内线圈中的感应电动势的大小.
正确答案
解:(1)磁通量的变化为:
△Φ=Φ2-Φ1=0.15Wb-0.05Wb=0.10Wb
(2)由法拉第电磁感应定律可知:
所以这段时间内通过回路的磁通量的变化量为0.1Wb,线圈中产生的感应电动势的大小为1V.
解析
解:(1)磁通量的变化为:
△Φ=Φ2-Φ1=0.15Wb-0.05Wb=0.10Wb
(2)由法拉第电磁感应定律可知:
所以这段时间内通过回路的磁通量的变化量为0.1Wb,线圈中产生的感应电动势的大小为1V.
关于法拉第电磁感应定律,下面说法正确的是( )
正确答案
解析
解:根据法拉第电磁感应定律E=n,得感应电动势的大小跟磁通量的变化率成正比.
A、磁通量变化越大,则不知磁通量的变化时间,故不一定越大,故A错误;
B、磁通量变化的快慢用,表示,磁通量变化得快,则
比值就大,根据法拉第电磁感应定律有产生的感应电动势就越大,故B正确;
C、磁通量越大,是Φ大,但△Φ及,则不一定大,故C错误;
D、虽然磁感应强度越强的磁场中,可能没有磁通量的变化,则感应电动势可能为零,故D错误.
故选:B.
根据法拉第电磁感应定律E=n,如果某一闭合的10匝线圈,通过它的磁通量在0.1s内从0增加到1Wb,则线圈产生的感应电动势大小为( )
正确答案
解析
解:E=n=
.故D正确,A、B、C错误.
故选D.
“自发电”地板是利用游人走过此处,踩踏地板发电.地板下有一发电装置,如图1所示,装置的主要结构是一个截面半径为r、匝数为n的线圈,无摩擦地套在磁场方向呈辐射状的永久磁铁槽中.磁场的磁感线沿半径方向均匀对称分布,图2为横截面俯视图.轻质地板四角各连接有一个劲度系数为k的复位弹簧(图中只画出其中的两个),轻质硬杆P将地板与线圈连接,从而带动线圈上下往返运动(线圈不发生形变)便能发电.若线圈所在位置磁感应强度大小为B,线圈的总电阻为R0,现用它向一个电阻为R的小灯泡供电.为便于研究,将某人走过时对板的压力使线圈发生的位移x随时间t变化的规律简化为图3所示.(弹簧始终处在弹性限度内,取线圈初始位置x=0,竖直向下为位移的正方向.线圈运动的过程中,线圈所在处的磁场始终不变)
(1)请在图4所示坐标系中画出线圈中感应电流i随时间t变化的图象,取图2中逆时针电流方向为正方向,要求写出相关的计算和判定的过程.
(2)t=时地板受到的压力.
(3)求人一次踩踏地板所做的功.
正确答案
解
(1)0~t0时间内电流方向为正方向,t0到2t0时间内电流方向为负方向;
0~t0、t0~2t0时间内线圈向下、向上运动的速率均为
全程产生的感应电动势大小均为E=nB2πr•v
又
联立以上方程得
线圈中感应电流i随时间t变化的图象如图所示.
(2)0~t0时间内安培力方向向上,且
时刻地板受到的压力
得
(3)全过程中弹力做功为零,则由功能关系可得
答:(1)在图4所示坐标系中画出线圈中感应电流i随时间t变化的图象如图.
(2)t=时地板受到的压力是
.
(3)人一次踩踏地板所做的功是.
解析
解
(1)0~t0时间内电流方向为正方向,t0到2t0时间内电流方向为负方向;
0~t0、t0~2t0时间内线圈向下、向上运动的速率均为
全程产生的感应电动势大小均为E=nB2πr•v
又
联立以上方程得
线圈中感应电流i随时间t变化的图象如图所示.
(2)0~t0时间内安培力方向向上,且
时刻地板受到的压力
得
(3)全过程中弹力做功为零,则由功能关系可得
答:(1)在图4所示坐标系中画出线圈中感应电流i随时间t变化的图象如图.
(2)t=时地板受到的压力是
.
(3)人一次踩踏地板所做的功是.
如图所示,固定在匀强磁场中的水平导轨ab、cd的间距L1=0.5m,金属棒ad与导轨左端bc的距离为L2=0.8m,整个闭合回路的电阻为R=0.2Ω,磁感应强度为B0=1T的匀强磁场竖直向下穿过整个回路.ad杆通过滑轮和轻绳连接着一个质量为m=0.04kg的物体,不计一切摩擦,现使磁场以
=0.2T/s的变化率均匀地增大.求:
(1)金属棒上电流的方向.
(2)感应电动势的大小.
(3)物体刚好离开地面的时间(g=10m/s2).
正确答案
解:(1)磁场的磁感应强度B均匀增大,穿过回路的磁通量增大,根据楞次定律判断得知,回路中感应电流方向沿a到d.
(2)回路中产生的感应电动势大小为 E==
L1L2=0.2×0.5×0.8V=0.08V
(3)感应电流大小为 I==
A=0.4A
物体刚要离开地面时,其受到的拉力F等于它的重力mg,而拉力F等于棒ad所受的安培力,即:
mg=BIL1;
得,B==
T=2T
所以物体刚好离开地面的时间为 t==5s.
答:(1)回路的感应电流方向沿a到d.
(2)感应电动势的大小0.08V;
(3)经过5s物体m刚好能离开地面.
解析
解:(1)磁场的磁感应强度B均匀增大,穿过回路的磁通量增大,根据楞次定律判断得知,回路中感应电流方向沿a到d.
(2)回路中产生的感应电动势大小为 E==
L1L2=0.2×0.5×0.8V=0.08V
(3)感应电流大小为 I==
A=0.4A
物体刚要离开地面时,其受到的拉力F等于它的重力mg,而拉力F等于棒ad所受的安培力,即:
mg=BIL1;
得,B==
T=2T
所以物体刚好离开地面的时间为 t==5s.
答:(1)回路的感应电流方向沿a到d.
(2)感应电动势的大小0.08V;
(3)经过5s物体m刚好能离开地面.
扫码查看完整答案与解析