- 空间直角坐标系
- 共468题
在空间直角坐标系中,已知M(2,0,0),N(0,2,10),若在z轴上有一点D,满足|MD|=|ND|,则点D的坐标为 ______.
正确答案
设D(0,0,z),则
|MD|=,|ND|=
,
故4+z2=4+(10-z)2
解得z=5
故D(0,0.5)
故答案为 (0,0.5).
已知A、B是球心为O的球面上的两点,在空间直角坐标系中,他们的坐标分别为O(0,0,0)、A(,-1,1)、B(0,
,
).
求(1)球的半径R (2)•
正确答案
(1)A、B是球心为O的球面上的两点
半径为0A或0B的长度
R=|OA|==2
(2)∵A(,-1,1)、B(0,
,
)
∴=(
,-1,1),
=(0,
,
)
∴•
=0-
+
=0
在长方体OABC-O1A1B1C1中,OO1=a,OA=b,OC=c,M是BB1中点,N是CC1中点,P是AA1上一点,且AP=2PA1,Q是OA反向延长线上一点,OA=2QO,以O为原点,OA,OC,OO1为x轴、y轴、z轴的正方向,
(1)求B、B1、M、N、P、Q的坐标;
(2)求QM的距离.
正确答案
(1)B(b,c,0)、B1(b,c,a)、
M(b,c,)、N(0,c,
)、
P(b,0,)、Q(-
,0,0);
(2)|QM|==
.
如图,已知正方体ABCD-A1B1C1D1棱长为2,E是线段B1C的中点,分别以AB、AD、AA1为x、y、z轴建立如图所示的空间直角坐标系A-xyz,点E的坐标是______.
正确答案
由坐标系可得:B1(2,0,2),C(2,2,0).
设E(x,y,z).由中点坐标公式可得:
,
解得x=2,y=1,z=1.
∴E(2,1,1).
故答案为:(2,1,1).
在空间直角坐标系中,已知A(1,-2,1),B(2,2,2),点P在z轴上,且满足|PA|=|PB|,则点P的坐标为______.
正确答案
∵点P在z轴上,
∴可设点P(0,0,z)
又∵A(1,-2,1),B(2,2,2),且|PA|=|PB|,
∴=
解之得z=3,所以点P坐标为(0,0,3)
故答案为:(0,0,3)
在空间直角坐标系中,点(3,-4,1)关于y轴对称的点的坐标是______.
正确答案
∵在空间直角坐标系中,点(3,-4,1)关于y轴对称,
∴其对称点为:(-3,-4,-1),
故答案为:(-3,-4,-1).
在空间直角坐标系中O-xyz,点(1,-2,3)关于坐标平面yOz的对称点的坐标为______.
正确答案
根据关于坐标平面yOz的对称点的坐标的特点,可得点(1,-2,3)关于坐标平面yOz的对称点的坐标为(-1,-2,3),
故答案为:(-1,-2,3).
(理)在空间直角坐标系O-xyz中,满足条件[x]2+[y]2+[z]2≤1的点(x,y,z)构成的空间区域Ω2的体积为V2([x],[y],[z]分别表示不大于x,y,z的最大整数),则V2=______.
正确答案
满足条件[x]2+[y]2+[z]2≤1的点(x,y,z)x,y,z≥0时,[x],[y],[z]的整解有(0,0,0),(0,0,1),(0,1,0),(1,0,0)(0,-1,0),(0,0,-1),(-1,0,0)
显然[x]的最大值是1
|[x]|=1时,1≤x<2,或者-1≤x<0,|[y]|=0,0≤y<1,|[z]|=0,0≤z<1,所围成的区域是棱长为1的正方体
同理可求|[x]|=0时,0≤x<1,|[y]|=1或|[z]|=1的体积
V2=7×1=7
故答案为:7
空间直角坐标系中,点A(2,-3,4)关于yOz平面对称的点的坐标是______.
正确答案
点A(2,-3,4)关于yOz平面对称的点的坐标是A′(-2,-3,4).
故答案为(-2,-3,4).
空间直角坐标系中,点A(2,5,6),点P在y轴上,PA=7,则点P的坐标为______.
正确答案
由题意设P(0,y,0),因为PA=7,
所以=7,
所以y=2或y=8,
所以点P的坐标为:(0,2,0)或(0,8,0).
故答案为:(0,2,0)或(0,8,0).
扫码查看完整答案与解析