热门试卷

X 查看更多试卷
1
题型:简答题
|
简答题 · 12 分

题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.

本题共有2个小题,第1小题满分6分,第2小题满分6分.

将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为长为,其中B1C在平面AA1O1O的同侧.

19.求圆柱的体积与侧面积;

20.求异面直线O1B1OC所成的角的大小.

第(1)小题正确答案及相关解析

正确答案

圆柱的体积为,圆柱的侧面积

解析

由题意可知,圆柱的母线长,底面半径

圆柱的体积

圆柱的侧面积

考查方向

立体几何

解题思路

体积面积公式

易错点

用错公式

第(2)小题正确答案及相关解析

正确答案

异面直线所成的角的大小为

解析

设过点的母线与下底面交于点,则

所以或其补角为所成的角.

长为,可知

长为,可知

所以异面直线所成的角的大小为

考查方向

立体几何

解题思路

平移法解决异面直线夹角问题;

易错点

弧长公式

1
题型: 单选题
|
单选题 · 5 分

5.表示空间中的两条直线,若p是异面直线;q不相交,则

Apq的充分条件,但不是q的必要条件

Bpq的必要条件,但不是q的充分条件

Cpq的充分必要条件

Dp既不是q的充分条件,也不是q的必要条件

正确答案

A

解析

根据充分条件和必要条件的定义结婚空间直线的位置关系,进行则l1,l2可能是平行或异面直线,即必要性不成立, 

故p是q的充分条件,但不是q的必要条.

考查方向

1、充分条件;2、必要条件;

解题思路

表示空间中的两条直线,若p是异面直线可以推出q不相交但是反过来不成立,不相交有可能是平行,所以选A。

易错点

粗心选错。

知识点

充要条件的判定异面直线的判定空间中直线与直线之间的位置关系
1
题型: 单选题
|
单选题 · 5 分

已知点分别是正方体的棱的中点,点分别是线段上的点,则与平面垂直的直线有()

A0条

B1条

C2条

D无数条

正确答案

B

解析

知识点

空间中直线与直线之间的位置关系
1
题型:简答题
|
简答题 · 14 分

如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2。

(1)求证:AB1∥平面BC1D;

(2)若BC=3,求三棱锥D﹣BC1C的体积。

正确答案

见解析。

解析

(1)

证明:连接B1C,设B1C与BC1相交于O,连接OD,

∵四边形BCC1B1是平行四边形,∴点O为B1C的中点。

∵D为AC的中点,

∴OD为△AB1C的中位线,∴OD∥B1A。

OD⊂平BC1D,AB1⊄平面BC1D,

∴AB1∥平面BC1D。

(2)∵三棱柱ABC﹣A1B1C1,∴侧棱CC1∥AA1

又∵AA1底面ABC,∴侧棱CC1⊥面ABC,

故CC1为三棱锥C1﹣BCD的高,A1A=CC1=2,

知识点

空间中直线与直线之间的位置关系
1
题型: 单选题
|
单选题 · 5 分

在空间,下列命题正确的是

A平行直线的平行投影重合

B平行于同一直线的两个平面平行

C垂直于同一平面的两个平面平行

D垂直于同一平面的两条直线平行

正确答案

D

解析

由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以很容易得出答案。

知识点

平面的基本性质及推论平行公理空间中直线与直线之间的位置关系
1
题型: 单选题
|
单选题 · 5 分

已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于                                              (  )

A

B1

C

D

正确答案

D

解析

略。

知识点

空间中直线与直线之间的位置关系
1
题型: 单选题
|
单选题 · 5 分

如图,在正方体-中,P为的中点,所在直线所成角的余弦值等(    )

A

B

C

D

正确答案

B

解析

知识点

空间中直线与直线之间的位置关系
1
题型:简答题
|
简答题 · 12 分

如图,在四棱台中,平面,底面是平行四边形,60°

(1)证明:

(2)证明:.

正确答案

见解析。

解析

(1)证明:因为,所以设

AD=a,则AB=2a,又因为60°,所以在中,由余弦定理得:,所以BD=,所以,故BD⊥AD,又因为

平面,所以BD,又因为, 所以平面,故.

(2)连结AC,设ACBD=0, 连结,由底面是平行四边形得:O是AC的中点,由四棱台知:平面ABCD∥平面,因为这两个平面同时都和平面相交,交线分别为AC、,故,又因为AB=2a, BC=a, ,所以可由余弦定理计算得AC=,又因为A1B1=2a, B1C1=, ,所以可由余弦定理计算得A1C1=,所以A1C1∥OC且A1C1=OC,故四边形OCC1A1是平行四边形,所以CC1∥A1O,又CC1平面A1BD,A1O平面A1BD,所以.

知识点

异面直线及其所成的角空间中直线与直线之间的位置关系直线与平面平行的判定与性质直线与直线垂直的判定与性质
1
题型:简答题
|
简答题 · 12 分

如图,弧是半径为的半圆,为直径,点为弧的中点,点和点为线段的三等分点,线段 与弧交于点,且,平面外一点满足平面,

(1)求异面直线所成角的大小;

(2) 将(及其内部)绕所在直线旋转一周形成一几何体,求该几何体的体积。

正确答案

(1)(2)

解析

(1) 平面,平面

,  异面直线所成角的大小为

(2)连结,在中,由余弦定理得:

,  

由题设知,所得几何体为圆锥,其底面积为 ,高为

该圆锥的体积为

知识点

空间中直线与直线之间的位置关系
1
题型: 单选题
|
单选题 · 5 分

已知是两条直线,是两个平面,给出下列命题:①若,则 ;②若平面上有不共线的三点到平面的距离相等,则;③若为异面直线,则,其中正确命题的个数

A

B

C

D

正确答案

B

解析

知识点

空间中直线与直线之间的位置关系空间中直线与平面之间的位置关系平面与平面之间的位置关系
下一知识点 : 直线、平面平行的判定与性质
百度题库 > 高考 > 文科数学 > 空间点、线、面的位置关系

扫码查看完整答案与解析

  • 上一题
  • 1/10
  • 下一题