- 牛顿第二定律
- 共448题
质量为M的拖拉机拉着耙来耙地,由静止开始做匀加速直线运动,在时间t内前进的距离为s。耙地时,拖拉机受到的牵引力恒为F,受到地面的阻力为自重的k倍,把所受阻力恒定,连接杆质量不计且与水平面的夹角θ保持不变。求:
(1)拖拉机的加速度大小。
(2)拖拉机对连接杆的拉力大小。
(3)时间t内拖拉机对耙做的功。
正确答案
(1)
(2)
(3)
解析
(1)拖拉机在时间t内匀加速前进s,根据位移公式
①
变形得 ②
(2)对拖拉机受到牵引力、支持力、重力、地面阻力和连杆拉力T,根据牛顿第二定律
③
联立②③变形得 ④
根据牛顿第三定律连杆对耙的反作用力为
⑤
拖拉机对耙做的功: ⑥
联立④⑤解得 ⑦
知识点
如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定的角速度ω转动,盘面上离转轴距离2.5m处有一小物体与圆盘始终保持相对静止。物体与盘面间的动摩擦因数为(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为300,g取10m/s2。则ω的最大值是
正确答案
解析
由于小物体随匀质圆盘做圆周运动,其向心力由小物体受到的指向圆心的合力提供,在最下端时指向圆心的合力最小。根据牛顿第二定律:,又解得,要使小物体与圆盘始终保持相对静止,则ω的最大值是。C正确。
知识点
在游乐节目中,选手需借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论.如图所示,他们将选手简化为质量m=60kg的质点,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角=,绳的悬挂点O距水面的高度为H=3m.不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。取重力加速度,,.
(1)求选手摆到最低点时对绳拉力的大小F;
(2)若绳长=2m,选手摆到最高点时松手落入手中.设水对选手的平均浮力,平均阻力,求选手落入水中的深度;
(3)若选手摆到最低点时松手,小明认为绳越长,在浮台上的落点距岸边越远;小阳却认为绳越短,落点距岸边越远,请通过推算说明你的观点。
正确答案
见解析
解析
(1)机械能守恒 ①
圆周运动 F′-mg=m
解得 F′=(3-2cos)mg
人对绳的拉力 F=F′
则 F=1080N
(2)动能定理 mg(H-lcos+d)-(f1+f2)d=0
则d=
解得
(3)选手从最低点开始做平抛运动 x=vt
H-l=
且有①式
解得
当时,x有最大值,解得l=1.5m
因此,两人的看法均不正确。当绳长钺接近1.5m时,落点距岸边越远。
本题考查机械能守恒,圆周运动向心力,动能定理,平抛运动规律及求极值问题。
当时,x有最大值 解得
因此,两人的看法均不正确,当绳长越接近1.5 m时,落点距岸边越远。
知识点
根据牛顿第二定律,下列叙述正确的是( )
正确答案
解析
物体加速度的大小与其质量与速度的乘积—动量,无关,A错误;物体所受合外力不为零,即有加速度产生,不需要达到某一数值,B错误;物体加速度大小与合外力成正比,C错误,在水平方向应用牛顿第二定律,当物体质量改变但其所受合力的水平分力不变时,物体水平加速度大小与其质量成反比。D正确。
知识点
如图所示,细线的一端系一质量为m的小球,另一端固定在倾角为θ的光滑斜面体顶端,细线与斜面平行。在斜面体以加速度a水平向右做匀加速直线运动的过程中,小球始终静止在斜面上,小球受到细线的拉力T和斜面的支持力为Fn分别为(重力加速度为g)
正确答案
解析
将绳子的拉力T和斜面弹力FN分解为 水平方向和 竖直方向
①
②
联立两式解方程组,得T=m(gsinθ+ acosθ) Fn= m(gcosθ- asinθ),选项A正确;
方法二:极限法。
将,则小球在平板上随板加速运动,,,代入,各选项仅A选项正确。
知识点
扫码查看完整答案与解析