- 根据实际问题选择函数类型
- 共7题
17.如图所示,













正确答案
选址应满足

解析
试题分析:本题属于解三角形应用题,题目的理解有一定难度,要注意读懂题意,选择函数模型来解决是本题的关键。
解法一:由条件①,得
设
则
所以点


所以当


即选址应满足

解法二:以



则
由条件①,得
设

化简得,
即点



则当



所以点

考查方向
解题思路
本题解三角形的应用题,解题步骤如下:
1、弄清题意,分清条件和结论,理顺数量关系。
2、建立相应数学模型。
3、利用正弦定理、余弦定理、求函数最值求解数学模型。
4、得出数学结论。
易错点
1、不能准确读懂题意,理顺数量关系。
2、转化为解三角形问题时,点

知识点
9. 某车间分批生产某种产品,每批的生产准备费用为800元。若每批生产

与仓储费用之和最小,每批应生产产品( )
正确答案
解析
解析已在路上飞奔,马上就到!
知识点
将一块半径为2 cm的半圆形铁皮卷成一个圆锥形(无底)容器,则它的容积为 。
正确答案
解析
略
知识点
17.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗





正确答案
解:设每天生产甲产品


由题意


可行域如图所示,
…………7分
把







解方程组



所以
答:每天生产甲产品

解析
解:设每天生产甲产品


由题意


可行域如图所示,
…………7分
把







解方程组



所以
答:每天生产甲产品

考查方向
简单线性规划问题(用平面区域表示二元一次不等式组) 等考点的理解
解题思路
线性规划问题求解步骤:
(1)确定目标函数;
(2)作可行域;
(3)作基准线(z=0时的直线);
(4)平移找最优解;
(5)求最值。
易错点
简单的线性规划中可行域的确定
教师点评
根据题设中的条件可设每天生产甲种产品x桶,乙种产品y桶,根据题设条件得出线性约束条件以及目标函数求出利润的最大值即可
知识点
如图所示,有一块半径长为1米的半圆形钢板,现要从中截取一个内接等腰梯形部件

(1)若用一种金属线条对梯形部件
(2)求梯形部件
正确答案
见解析。
解析
如图所示,以直径









(1)∵

设


下面只需要求
令

∴


(2)
(方法1)













(方法2)








所以当


(方法3)设







令










知识点
19.如图,已知



(1)用

(2)设


正确答案
解析
解析已在路上飞奔,马上就到!
知识点
17. 某油库的设计容量为30万吨,年初储量为10万吨,从年初起计划每月购进石油 




(1)试写出第


(2)要使16个月内每月按计划购进石油之后,油库总能满足区域内和区域外的需求,且每月石油调出后,油库的石油剩余量不超过油库的容量,试确定
正确答案
见解析
解析
解:(1)
(2)根据题意
所以
即 
考查方向
解题思路
本题考查函数不等式的应用.解题步骤如下:
(1)求出函数表达式。
(2)根据函数值域,列出不等式。
(3)用换元法求出
易错点
不等式恒成立分析不够
知识点
扫码查看完整答案与解析
















